Как найти множество допустимых значений переменной выражения. ОДЗ уравнения — конечное число значений

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений . Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые , в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, в результате имеем (−∞, 1]∪∪; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.
  • 1

    Шакирова Г. Г. (, МАОУ»Лицей № 9»)

    1. http://www.school.ioffe.ru/library/online/geometry/ryzhik/35000/35000_part3.pdf.:

    2. Газета «Математика» № 46,15. 1998.

    3. Газета «Математика» № 15. 2002.

    4. Газета «Математика» № 17. 2002.

    5. Ф. П. Яремчук, П. А. Рудченко Справочник «Алгебра и элементарные функции» Киев: «Наукова думка»; 1976.;

    7. Сборник по подготовке к ОГЭ. Типовые тестовые задания, 9 класс, издательство «ЭКЗАМЕН», Москва 2016.

    8. Учебник по алгебре за 9 класс, А. Г. Мордкович, Н. П. Николаев, издательство «МНЭМОЗИНА», Москва 2010.

    Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте III Международного конкурса научно-исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://www.school-science.ru/0317/7/29329

    Я считаю, что математика - это одна из важнейших наук в мире. Она приобретает особое значение для человека, в связи с ростом науки и технического прогресса. Всем людям в своей жизни приходилось выполнять достаточно сложные расчеты, пользоваться вычислительной техникой, находить и применять нужные формулы, владеть приемами геометрических измерений, но человек не всегда учитывает все условия, влияющие на результат. Именно благодаря этому и появляется условие ОДЗ.

    Данная тема меня заинтересовала, тем, что я не до конца понял значение и важность нахождения ОДЗ, благодаря чему я не уделял должного внимания важности ОДЗ в некоторых заданиях, и у меня с ОДЗ возникла «война».

    В то же время по математической сути нахождение ОДЗ вовсе не является обязательным, часто не нужным, а иногда и вообще невозможным - и все это без какого бы то ни было ущерба для решения. И из-за такой ситуации с ОДЗ и возникает «война».

    При решении задач некоторых типов уравнений и неравенств, я столкнулся с тем, что некоторые условия либо не подходят, либо на них накладываются определенные значения и в дальнейшем я понял, что действительно существует определенная область, в которой расширяются допустимые значения, удовлетворяющие условию задач и уравнений некоторых типов.

    Если привести грубое сравнение теннисного мячика и функции (неравенства, уравнения или задачи), то оболочка мячика и внешние условия - это наше ОДЗ, а то, как мячик отскакивает от пола - это решение функции (неравенства, уравнения или задачи). Тогда можно сказать, что если мы нарушим оболочку этого мячика (или, проще говоря, порвем его), то мячик перестанет так же хорошо отскакивать, как и раньше, то есть если мы нарушим ОДЗ, то решения не будет.

    Актуальность моей темы заключается в том, что человек, при решении проблемы, не обращает внимания на мелкие условия. Так же можно привести аналогию с решением определенных заданий по математике, где не учитывается условие ОДЗ, а это влияет на результат решения. Таких заданий много во второй части ОГЭ, что может привести к неуспешной сдачи экзамена.

    Доказать важность ОДЗ.

    1. Объяснить свойства и значения в нашей жизни ОДЗ.

    2. Проанализировать различные методы решения примеров с участием ОДЗ.

    Методы исследования:

    • теоретическое исследование (анализ литературы, поиск источников);
    • анализ основных задач и понятий ОДЗ;
    • метод индукции ОДЗ (умозаключение от фактов к моей гипотезе)
    • реальное исследование (решение заданий группой людей).

    Практическая часть:

    Проведение исследований по решению несложных задач и уравнений, описание исследований.

    Гипотеза:

    ОДЗ - это следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях.

    История формирования

    Что ж, давайте копнем в историю формирования ОДЗ.

    Как и остальные понятия математики, понятие функции сложилось, конечно же, не сразу, а прошло долгий путь развития. В работе Пьера Ферма «Введение и изучение плоских и телесных мест» (опубликованной в 1679 году) сказано: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». Как можно догадаться, здесь ведется речь о функциональной зависимости и ее графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости между двумя переменными величины. Это свидетельствует уже о совершенно отчетливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако сам термин «функция» впервые появляется лишь в 1692 году у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы ее точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696 года) термин «функция» не употребляется. Первое определение функции, близкое к современному, встречается у И. Бернулли (в 1718 году): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчетливого определения лежит идея задания функции аналитической формулой.

    В итоге я пришел к определению ОДЗ для функции. Областью определения (допустимых значений) функции Y называется совокупность значений независимой переменной X, при которых эта функция определена, т. е. область изменения независимой переменной (аргумента).

    Уравнения и системы уравнений математики умели решать очень давно. В «Арифметике» греческого математика из Александрии Диофанта (III века) еще не было систематического изложения алгебры, однако в ней содержался ряд задач, решаемых с помощью составления уравнений. Есть в ней такая задача: «Найти два числа по их сумме 20 и произведению 96».

    Чтобы обезопасить себя от решения квадратного уравнения общего вида, к которому приводит обозначение одного из чисел буквой, и которое тогда еще не умели решать, Диофант обозначал неизвестные числа 10 + x и 10 - x (в современной записи) и получал неполное квадратное уравнение 100 - х2 = 96, для которого подходил только положительный корень 2.

    Задачи на квадратные уравнения встречаются в трудах индийских математиков уже с V века нашей эры.

    Квадратные уравнения классифицируются в трактате «Краткая книга об исчислении алгебры и алмукабалы» Мухаммеда аль-Хорезми (787-850 года). В нем рассмотрены и решены (в геометрической форме) 6 видов квадратных уравнений, содержащих в обеих частях только члены с положительными коэффициентами. При этом рассматривались лишь положительные корни уравнений.

    В самом известном российском учебнике «Арифметика» Леонтия Филипповича Магницкого (1669-1739 года) имелось немало задач на квадратные уравнения. Вот одна из них:

    «Некий генерал хочет с 5000 человек баталию учинить, и чтобы та была в лице вдвое, нежели в стороне. Колик оная баталия будет иметь в лице и в стороне?», т. е. сколько солдат надо поставить по фронту и сколько им в затылок, чтобы число солдат по фронту было в 2 раза больше числа солдат, расположенных им «в затылок»?

    В древневавилонских текстах (3000-2000 лет до нашей эры) встречаются и задачи, решаемые теперь с помощью систем уравнений, содержащих уравнения второй степени. Вот одна из них:

    «Площади двух своих квадратов я сложил: . Сторона второго квадрата равна стороны первого и еще 5».

    Соответствующая система в современной записи имеет вид:

    И только в XVII веке после работ Декарта, Ньютона и других математиков решение квадратных уравнений приняло современный вид.

    Вас, как мне кажется, интересует ответ на вопрос: «Для чего я написал историю возникновения функции и неравенств?» Ответ очень прост. ОДЗ - это лишь следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях.

    ОДЗ в неравенствах и уравнениях

    При решении дробно-рациональных уравнений и неравенств:

    Знания с 1 по 9 класс не позволяют мне производить деление на 0. «На 0 делить нельзя, так как на пустоту что-либо поделить невозможно», - говорили мне учителя в начальной школе.

    Решение иррациональных уравнений и неравенств:

    Уравнения

    Неравенства

    Исследование

    Я провел исследовательскую работу для выяснения, как часто ученики учитывают ОДЗ при решении задач, уравнений, неравенств и т. д. Для этого я подобрал 4 задания и решил их сам, затем предложил их 35 девятиклассникам, в первых трех из которых не обязательно было учитывать ОДЗ, а в четвертом - обязательно. Целью исследовательской работы являлось доказательство того, что люди не уделяют должного внимания ОДЗ.

    Задания, предложенные девятиклассникам:

    1) Из пункта А в пункт Б выехал автобус со скоростью 60 км/ч. Через час вслед за ним в пункт Б выехал автомобиль, и через 4 часа догнал автобус в пункте Б (Приехали одновременно). Какая скорость у автомобиля?

    2) (х+3)2+10=(х-2)2

    3) 1/(х-2) = х-4

    При проверке данных заданий я обнаружил, что решения можно разделить по некоторым критериям.

    Критерии отбора решений и количество входящих в них человек:

    Справились со всеми заданиями - 5 человек; написали ОДЗ в 4 задании, но допустили ошибку в 1 задании - 2 человека, в 2 примерах - 8 человек, в 3 примерах - 3 человека; Не писали ОДЗ в 4 примере - 17 человек. Основные ошибки:

    1. Забывают о своем ОДЗ (написали, но забыли учесть);
    2. Неправильно составили ОДЗ;
    3. Неправильно домножили уравнения;
    4. Не используют подходящие формулы сокращенного умножения;
    5. Путают знаки (*, +, -,:);
    6. Делают не все примеры.
    7. Забывают о смене знаков, при переносе через равно;

    И я пришел к тому, что около половины учеников 9-х классов, к сожалению, не учитывали, либо неправильно записали ОДЗ в представленных заданиях, вследствие чего допустили ошибки.

    Где встречается ОДЗ в реальной жизни

    Мы, на самом деле, так часто встречаемся с условиями ОДЗ, что их просто не замечаем. Например, при покупке чего-либо; с определением действий, при различной температуре на улице.

    Пример № 1 из исследования (задача) может быть моделью реальной ситуации, но слишком обобщенной (ни один автобус и ни одна машина не может все время ездить с постоянной скоростью из-за различных факторов, таких как качество асфальта на дороге, углы и количество поворотов, количество бензина и др.). Вот более подходящий пример:

    Нам дали 200 рублей на корм коту, который стоит 18 рублей за пакетик, и буханку белого, по стоимости 24 рубля. Нужно рассчитать, сколько рублей мы потратим на корм. Возьмем за X - количество пакетиков с кормом.

    ОДЗ: х ≥ 0,

    x = (200-24)/18,

    x = 9 (остаток 14).

    Значит, мы купим 9 пакетиков корма с остатком равным 14 рублей, что соответствует нашему ОДЗ.

    Необязательность ОДЗ

    Как я убедился на собственном опыте, ОДЗ, зачастую, необязательно указывать в примерах, хотя именно указание ОДЗ требуют задания в ОГЭ и ЕГЭ, иначе получишь меньше баллов. Это можно увидеть на примере 1 и 2 заданий из исследования. И действительно, при решении этих номеров мы замечаем, что область допустимых значений можно не указывать, так как ее отсутствие никак не повлияет на ответ. Но очень часто в таких случаях хорошо сделанную работу оценивали на тройку.

    Поиски ОДЗ являются, зачастую, просто лишней работой, без которой спокойно можно обойтись. Тут можно привести массу других примеров. Они хорошо известны, и поэтому я их опускаю. Главным способом решения являются равносильные преобразования при переходе от одного уравнения к другому, то есть к более простому.

    Примеры-ловушки

    Среди заданий, использующих уравнения или неравенства, есть задачи-ловушки (задания, в которых ОДЗ может сыграть над вами злую шутку). Известно, что в результате некоторых преобразований, изменяющих исходное ОДЗ, мы можем прийти к неверным решениям. Можно привести пример 3 и 4 заданий из исследовательской работы, но вот еще 1 пример таких уравнений:

    Из ОДЗ имеем х ≥ 5 (потому что подкоренное выражения не может быть отрицательным). Так как справа стоит положительное выражение, то а значит, x - 5 > 2x - 1. Решая последнее неравенство, получим x < -4, что не входит в ОДЗ. Поэтому решения нет.

    Заключение

    Подводя некоторый итог всей исследовательской работе, я с уверенностью могу сказать, что некоторые условия ОДЗ для уравнений и неравенств - схожи. ОДЗ, как я доказал, встречается в реальной жизни, притом очень часто; также я показал то, что универсального ответа на вопрос «обязательно ли указывать ОДЗ во всех примерах?» в школьном курсе нет.

    Также я доказал свою гипотезу, которая звучала так: «ОДЗ, в действительности, - это следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях».

    Каждый раз, если хочешь понять, что делаешь, а не действовать механически, возникает вопрос: а какой способ решения лучше всего выбрать, в частности искать ОДЗ или не надо? Я полагаю, что в ходе своей работы частично ответил на этот вопрос.

    Причина учета ОДЗ кажется очевидной, но люди все равно будут противиться тому, чтобы лишний раз записать ОДЗ. И сколько бы ни было различных презентаций, пояснений в учебниках и объяснений со стороны учителей, война, не смотря ни на что, еще не завершилась и даже не собирается завершаться, что и подтверждает актуальность и важность данной темы.

    Но я бы хотел посоветовать всем, всегда учитывать ОДЗ, так как сразу сказать, что в какой-то определенной задаче нет подвоха, удается далеко не всегда.

    Представленный мной доклад может использоваться не только учениками, но и педагогами для объяснения важности ОДЗ.

    Библиографическая ссылка

    Северов О. С. ВОЙНА С ОДЗ // Международный школьный научный вестник. – 2017. – № 5-1. – С. 84-87;
    URL: http://school-herald.ru/ru/article/view?id=400 (дата обращения: 02.09.2019).

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

    В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

    Yandex.RTB R-A-339285-1

    Допустимые и недопустимые значения переменных

    Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

    Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

    Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1: а, если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

    Определение 1

    Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

    Определение 2

    Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

    То есть отсюда следует полное определение

    Определение 3

    Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

    Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

    Пример 1

    Для примера рассмотрим выражение вида 1 x - y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид (0 , 1 , 2) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 - 1 + 2 = 1 1 = 1 . Отсюда видим, что (1 , 1 , 2) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 - 2 + 1 = 1 0 .

    Что такое ОДЗ?

    Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

    Определение 4

    Область ОДЗ – это множество значений, допустимых для данного выражения.

    Рассмотрим на примере выражения.

    Пример 2

    Если имеем выражение вида 5 z - 3 , тогда ОДЗ имеет вид (− ∞ , 3) ∪ (3 , + ∞) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

    Если имеется выражения вида z x - y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

    Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f (x) .

    Как найти ОДЗ? Примеры, решения

    Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

    Существуют выражения, где их вычисление невозможно:

    • если имеется деление на ноль;
    • извлечение корня из отрицательного числа;
    • наличие отрицательного целого показателя – только для положительных чисел;
    • вычисление логарифма отрицательного числа;
    • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
    • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ - 1 ; 1 ] .

    Все это говорит о том, как важно наличие ОДЗ.

    Пример 3

    Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

    Решение

    В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

    Ответ: x и y – любые значения.

    Пример 4

    Найти ОДЗ выражения 1 3 - x + 1 0 .

    Решение

    Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

    Ответ: ∅ .

    Пример 5

    Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

    Решение

    Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

    Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

    Пример 6

    Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

    Решение

    По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

    x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

    Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

    Ответ: [ − 1 , 0) ∪ (0 , + ∞)

    Почему важно учитывать ОДЗ при проведении преобразований?

    При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

    Тождественные преобразования:

    • могут не влиять на ОДЗ;
    • могут привести в расширению или дополнению ОДЗ;
    • могут сузить ОДЗ.

    Рассмотрим на примере.

    Пример 7

    Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

    Пример 8

    Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

    Рассмотрим пример с наличием подкоренного выражения.

    Пример 9

    Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

    Нужно избегать преобразований, которые сужают ОДЗ.

    Пример 10

    Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

    Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

    Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

    Пример 11

    Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

    При наличии логарифмов дело обстоит немного иначе.

    Пример 12

    Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

    При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Область допустимых значений квадратного корня. Квадратный корень из четной степени. Подкоренное выражение должно быть _____________________. ? 0. Извлечение квадратного корня из отрицательного числа ______________________________. ? 0. ? 0. При извлечении квадратного корня из четной степени не забывать ________________. Так как корень арифметический, то его значение должно быть _______, следовательно, значение корня должно быть __________________ .

    Картинка 3 из презентации «Квадратный корень из числа» к урокам алгебры на тему «Корень»

    Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока алгебры, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Квадратный корень из числа.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 254 КБ.

    Скачать презентацию

    Корень

    «Арифметический корень натуральной степени» - Сравните. Повторение. Решите уравнения. Точка. Вычислить. Решите уравнение. Самостоятельная работа. Неотрицательное число. Арифметический корень натуральной степени. Арифметический корень.

    «Квадратный корень из числа» - Таблица основных степеней. Корень из дроби. Арифметический квадратный корень. Вычисление квадратных корней. Корень квадратный. Запомни. Вычисление корня. Извлечение квадратных корней путем разложения на множители. Область допустимых значений квадратного корня. Свойства квадратных корней. Извлечение корня из четной степени.

    «Квадратный корень урок» - Самостоятельная работа. Повторить определение арифметического квадратного корня. Оцени себя сам: Здравствуйте, ребята! Мы рассмотрели доказательство теоремы об извлечении квадратного корня из произведения. Выражение. 1. Как называется выражение. 5. Итак, Повторим: 4. Вывод: Затем Вам будут предложены задания для самопроверки.

    «Арифметический квадратный корень» - 1.Сформулируйте определение арифметического квадратного корня. Новые понятия. Решаем вместе. Тема: Квадратный корень.Арифметический квадратный корень. Помощь учебника. При каком а не имеет смысла Найди формулу. Подведение итогов. Решение. Как называют а? Примеры разберите в учебнике и приведите свой пример.

    «Арифметический корень» - Величина корня не изменится, если показатель корня и показатель подкоренного выражения умножить на одно и тоже число. Определения. Таллинн Ласнамяэская гимназия. Свойства арифметических корней. Арифметическим корнем называется неотрицательное значение корня из неотрицательного числа. Корень чётной степени считают арифметическим (неотрицательным).

    «Свойства арифметического квадратного корня» - Несколько значений х. Упростите выражение. Загадка. Проблемные ситуации. Свойства арифметического квадратного корня. Теоретический опрос. Теоретический устный опрос. Расшифруйте поговорку. Исключите ненужное словосочетание. Найди ошибку. Преобразуйте выражение.

    Всего в теме 14 презентаций