Сложение двоичных чисел. Двоичная арифметика Сложение двоичных вещественных чисел с плавающей запятой

Перевод числа из двоичной системы в десятичную

Перевод числа из двоичной системы в десятичную можно осуществлять для целой и дробной частей числа по одному алгоритму путем вычисления суммы произведений цифры двоичного числа на вес ее знакоместа:

11100011 2 =1*2 7 +1*2 6 +1*2 5 +0*2 4 +0*2 3 +0*2 2 +1*2 1 +1*2 0 =128+64+32+2+1=227 10

0,10100011 2 =1*2 -1 +0*2 -2 +1*2 -3 +0*2 -4 +0*2 -5 ++0*2 -6 +1*2 -7 +1*2 -8 =0.5+0.125+0.0078+0.0039=0.6367

Перевод числа из десятичной системы в двоичную

Перевод числа из десятичной системы в двоичную осуществляется отдельно для целой и дробной частей числа по следующим алгоритмам:

а) целое десятичное число делится нацело на основание 2, затем на 2 делятся последовательно все частные от целочисленного деления, до тех пор пока частное не станет меньше основания. В результат заносится последнее частное и все остатки от деления, начиная с последнего. Например:

перевести число 227 в двоичную форму:

227:2=113 (записываем в результат остаток от деления 1), 113:2=56 (записываем в результат остаток от деления 1), 56:2=28 (записываем в результат остаток от деления 0), 28:2=14 (записываем в результат остаток от деления 0), 14:2=7 (записываем в результат остаток от деления 0), 7:2=3 (записываем в результат остаток от деления 1), 3:2=1 (записываем в результат остаток от деления 1), записываем в результат последнее частное – 1. Итого получаем: 227 10 =11100011 2 . Проверим обратным переводом:

1*2 0 +1*2 1 +0*2 2 +0*2 3 +0*2 4 +1*2 5 +1*2 6 +1*2 7 =1+2+32+64+128=227

б) десятичная дробь последовательно умножается на основание 2, причем сразу после каждой операции умножения полученная целая часть записывается в результат и в дальнейшем умножении не участвует (отбрасывается). Количество операций умножения зависит от требуемой точности, например:

переведем в двоичную форму число 0.64:

0.64*2=1.28 (отбрасываем 1 и записываем в результат 1)

0.28*2=0.56 (записываем в результат 0)

0.56*2=1.12 (отбрасываем 1 и записываем в результат 1)

0.12*2=0.24 (записываем в результат 0)

0.24*2=0.48 (записываем в результат 0)

0.48*2=0.96 (записываем в результат 0)

0.96*2=1.82 (записываем в результат 1)

Итого: 0.64 10 =0.1010001 2

Проверим обратным переводом:

1*2 -1 +0*2 -2 +1*2 -3 +0*2 -4 +0*2 -5 +0*2 -6 +1*2 -7 = 0.5*0+0.125+0+0+0+0.0078=0.6328

Представление в компьютере отрицательных чисел

Следует иметь в виду, что в памяти ЭВМ двоичные числа хранятся в регистрах, состоящих из 8 ячеек, т.е. минимальное двоичное число, которое можно разместить в памяти, должно быть восьмиразрядным. При этом в незаполненных ячейках регистра (в старших разрядах) записываются нули.

В отличие от десятичной системы в двоичной системе счисления отсутствуют специальные символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления двоичных отрицательных чисел используются следующие две формы.

Форма значения со знаком – старший (левый) разряд метится как знаковый и содержит информацию только о знаке числа:

1 – число отрицательное, 0 – число положительное.

Остальные разряды отводятся под абсолютную величину числа.

5 10 = 0000 0101 2 ; -5 10 =1000 0101 2 .

Устройство компьютера выполняется таким образом, чтобы отрицательные числа были представлены в дополнительном коде, поскольку это дает существенную экономию времени при выполнении с ними арифметических операций.

Форма обратного дополнительного кода, перевод в которую производится по следующему алгоритму:

1) Отбросить знаковый разряд;

2) инвертировать все разряды числа;

3) прибавить единицу к полученному коду;

4) восстановить единицу в знаковом разряде.
Например:

Преобразование числа -5 10

Записываем в двоичном виде: 1000 0101; отбрасываем знаковый разряд: 000 0101; инвертируем все разряды: 111 1010; прибавляем единицу: 111 1010 + 1 = 111 1011; восстанавливаем единицу в знаковом разряде: 1111 1011. Итого -5 10 в обратном дополнительном коде записывается как 1111 1011.

Правила выполнения арифметических операций в двоичной системе

Сложение. Операция сложения выполняется так же, как и в десятичной системе. Переполнение разряда приводит к появлению единицы в следующем разряде:

0+0=0, 0+1=1, 1+1=10;

+ 111011

Вычитание. Поскольку большинство современных компьютеров располагает только одним аппаратным сумматором, с помощью которого реализуются все арифметические операции, вычитание сводится к сложению с отрицательным числом:

Правила вычитания в двоичной системе. Алгоритм операции вычитания путем сложения дополнительных кодов:

1) преобразовать отрицательное число из формы со знаком в дополнительный код;

2) выполнить операцию двоичного сложения над всеми разрядами,
включая знаковый, игнорируя единицу переноса из самого высокого
разряда;

3) при равенстве единице знакового разряда суммы, что означает
получение отрицательного результата в форме дополнительного кода,
необходимо перевести результат в знаковую форму (используя алгоритм перевода в обратную форму).

Например, выполним действие 13-15=13+(-15)

1. Переводим -15 в форму дополнительного кода:

1000 1111 –> 000 1111 -> 111 0000 -> 111 0000 +1=111 0001 -> 1111 0001

2. Складываем 13 и -15:

+11110001

3. Переводим в обычную двоичную форму:

1111 1110 -> 111 1110 ->000 0001 -> 000 0001+1=000 0010 -> 1000 0010 = -2 10

Таким образом, при выполнении операций сложения и вычитания арифметико-логическому устройству процессора приходится выполнять поразрядное сложение с переносом, инвертирование и проверку на знак двоичных чисел.

В тех случаях, когда необходимо произвести арифметические действия над числами больше 127, они размещаются уже не в одном, а в двух и более байтах.

Например, выполним действие: 15-13=15+(-13)

1. Переводим -13 в форму дополнительного кода:

1000 1101 –> 000 1101 -> 111 0010 -> 111 0010 +1=111 0011 -> 1111 0011

2. Складываем 15 и -13:

+11110011

3. Знаковый разряд равен 0, обратный перевод не требуется, т. е. результат 0000 0010=2 10

Умножение. Если наряду с перечисленными операциями выполнить операции сдвига, то с помощью сумматора можно выполнить и умножение, которое сводится к серии повторных сложений. Если цифра в нулевой позиции множителя равна 1, то множимое переписывается под соответствующими разрядами, умножение на последующие единицы приводят к сдвигу слагаемого влево на одну позицию. Если цифра множителя равна 0, то следующее слагаемое смещается на две позиции влево.

Например, умножим 6 (0000 0110) на 5 (0000 0101):

*00000101

(умножаем на 1) +00000110

(умножаем на 0) 1

(умножаем на 1) +0000011011

Проверим: 0001 1110=0*2 0 +1*2 1 +1*2 2 +1*2 3 +1*2 4 =2+4+8=16=30

Например, умножим 15 (0000 1111) на 13 (0000 1101):

*00001101

(умножаем на 1) +00001111

(умножаем на 0) 1

(умножаем на 1) +0000111111

(умножаем на 1) +00001111111

Проверим: 1100 0011=1*2 7 +1*2 6 +0*2 5 +0*2 4 +0*2 3 +0*2 2 +1*2 1 +1*2 0 =1+2+64+128=195

Деление. При выполнении операции деления несколько раз производится операция вычитания. Поэтому предварительно следует найти дополнительный код делителя. Деление выполняется путем повторного вычитания и сдвига. Для примера выполним деление числа 195 (1100 0011) на 15 (0000 1111). Дополнительный код числа 0000 1111 -> 11110001. Поскольку по правилам деления каждое промежуточное делимое должно быть больше делителя, выбираем в качестве первого делимого число 11000, т.е. первые пять разрядов и добавляем слева три нуля, дополняя делимое до 8 разрядов. Затем производим сложение его с дополнительным кодом делимого и заносим в результат единицу. Если следующее делимое после сноса очередной цифры будет меньше делителя, то в результат заносится нуль и в делимое сносится еще одна цифра из исходного делимого.

Пример 1.Найдите X, если Для преобразования левой части равенства последовательно воспользуемся законом де Моргана для логического сложения и законом двойного отрицания: Согласно распределительному закону для логического сложения: Согласно закону исключения третьего и закона исключения констант: Полученную левую часть приравняем правой: X = В. Окончательно получим: X = В. Пример 2.Упростите логическое выражение Правильность упрощения проверьте с помощью таблиц истинности для исходного и полученного логического выражения. Согласно закону общей инверсии для логического сложения (первому закону де Моргана) и закону двойного отрицания: Согласно распределительному (дистрибутивному) закону для логического сложения: Согласно закону противоречия: Согласно закону идемпотентности Подставляем значения и, используя переместительный (коммутативный)закон и группируя слагаемые, получаем: Согласно закону исключения (склеивания) Подставляем значения и получаем: Согласно закону исключения констант для логического сложения и закону идемпотентности: Подставляем значения и получаем: Согласно распределительному (дистрибутивному) закону для логического умножения: Согласно закону исключения третьего: Подставляем значения и окончательно получаем: 2. Логические основы компьютера Дискретный преобразователь, который после обработки входных двоичных сигналов выдаёт на выходе сигнал, являющийся значением одной из логических операций, называется логическим элементом. Ниже приведены условные обозначения (схемы) базовых логических элементов, реализующих логическое умножение (конъюнктор), логическое сложение (дизъюнктор) и отрицание (инвертор). Рис. 3.1. Конъюнктор, дизъюнктор и инвертор Устройства компьютера (сумматоры в процессоре, ячейки памяти в оперативной памяти и др.) строятся на основе базо­вых логических элементов. Пример 3. По заданной логической функции F(A, В) = =B&АÚB&A построить логическую схему. Построение необходимо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе логической схемы должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые в свою очередь подаются один входной сигнал нормальный и один инвертированный (с инверторов). Пример 4. Логическая схема имеет два входа X и Y. Определить логические функции F1(X,Y) и F2(X,Y), которые реализуются на ее двух выходах. Функция F1(X,Y) реализуется на выходе первого конъюнктора, то есть F1(X,Y) = X&Y. Одновременно сигнал с конъюнктора подается на вход инвертора, на выходе которого реализуется сигнал X&Y, кото­рый, в свою очередь, подается на один из входов второго конъюнктора. На другой вход второго конъюнктора подается сигнал Xv Y с дизъюнктора, следовательно, функция F2(X,Y) = X&Y&,(XvY). Рассмотрим схему сложения двух n-разрядных двоичных чисел. При сложении цифр i-ro разряда складываются ai и bi, а также Pi-1 - перенос из i-1 разряда. Результатом будет st - сумма и Pi - перенос в старший разряд. Таким образом, одноразрядный двоичный сумматор - это устройство с тремя входами и двумя выходами. Пример 3.15. Построить таблицу истинности одноразрядного двоичного сумматора, воспользовавшись таблицей сложения двоичных чисел. Триггер. Для хранения информации в оперативной памяти компьютера, а также во внутренних регистрах процессора ис­пользуются триггеры. Триггер может находиться а одном из двух устойчивых состояний, что позволяет запоминать, хра­нить и считывать 1 бит информации. Самый простой триггер - .RS-триггер. Он состоит из двух логических элементов ИЛИ-НЕ, которые реализуют логиче­скую функцию F9 (смотри таблицу 3.1). Входы и выходы элементов соединены кольцом: выход пер­вого соединен со входом второго и выход второго - со входом первого. Триггер имеет два входа S (от англ. set - установка) и Я (от англ. reset - сброс) и два выхода Q (прямой) и Q (инверсный). Рис. 2 Логическая схема RS-триггера Пример 3.16. Построить таблицу, описывающую состояние входов и выходов RS-триггера. Если на входы поступают сигналы R = 0 и S = 0, то триггер находится в режиме хранения, на выходах Q и Q сохраняются установленные ранее значения. Если на установочный вход S поступает на короткое время сигнал 1, то триггер переходит в состояние 1 и после того, как сигнал на входе S станет равен 0, триггер будет сохранять это состояние, то есть будет хранить 1. При подаче 1 на вход R триггер перейдет в состояние 0. Подача на оба входа S и R логической единицы может при­вести к неоднозначному результату, поэтому такая комбина­ция входных сигналов запрещена. Задания для самостоятельного выполнения 1. Существуют 16 логических функций от двух переменных (смотри таблицу 3.1). Постройте их логические схемы с помощью базовых логических элементов: конъюнктора, дизъюнктора и инвертора. 2. Доказать, что рассмотренная в примере 3.10 логическая схема является одноразрядным двоичным полусумматором (не учитывается перенос из младшего разряда). 3. Доказать, построив таблицу истинности, что логическая функция Р = (A&B)v(A&,P0)v(B&P0) определяет перенос в старший разряд при сложении двоичных чисел (А и В - слагаемые, Ро - перенос из младшего разряда). 4. Доказать, построив таблицу истинности, что логическая функция S = (AvBvP0)&Pv(A&.B&P0) определяет сумму при сложении двоич­ных чисел (А и В - слагаемые, Ро - перенос из младшего разряда). 5. Построить логическую схему одноразрядного двоичного сумматора. Какое количество базовых логических элементов необходимо для реализации 64-разрядного сумматора двоичных чисел? 6. Какое количество базовых логических элементов образуют оперативную память современного компьютера объемом 64 Мбайта? 1. Запишите в развернутом виде числа: а)A8=143511; г)А10=143,511; 6)А2=100111; д)А8=0,143511; в)А16=143511; е)А1е=1АЗ,5С1. 2. Запишите в свернутой форме следующие числа: а)А10=9-101+1*10+5"10-1+3-10~2; б)А16=А-161+1-16°+7-16"1+5-16~2. 3.Правильно ли записаны числа в соответствующих системах счисле­ния: а)А10=А,234; в) А16=456,46; б)А8=-5678; г)А2=22,2? 4. Какое минимальное основание имеет система счисления, если в ней записаны числа 127, 222, 111? Определите десятичный эквива­лент данных чисел в найденной системе счисления. 5. Чему равен десятичный эквивалент чисел 101012, 101018 1010116? 6. Трехзначное десятичное число оканчивается цифрой 3. Если эту цифру переместить на два разряда влево, то есть с нее будет начина­ ться запись нового числа, то это новое число будет на единицу боль­ ше утроенного исходного числа. Найдите исходное число. 2.22.Шестизначное десятичное число начинается слева цифрой 1. Если эту цифру перенести с первого места слева на последнее место спра­ ва, то значение образованного числа будет втрое больше исходного. Найдите исходное число. 2.23.Какое из чисел 1100112, 1114, 358 и 1В16 является: а) наибольшим; б) наименьшим? 2.27.Существует ли треугольник, длины сторон которого выражаются числами 12g, 1116 и 110112? 2.28.Какое наибольшее десятичное число можно записать тремя цифра­ ми в двоичной, восьмеричной и шестнадцатеричной системах счис­ ления? 2.29.«Несерьезные» вопросы. Когда 2x2=100? Когда 6x6=44? Когда 4x4=20? 2.30. Выпишите целые десятичные числа, принадлежащие следующим числовым промежуткам: а) ; б) ; в) . 2.31.В классе 11112 девочек и 11002 мальчиков. Сколько учеников в классе? 2.32.В классе 36д учеников, из них 21q девочек и 15q мальчиков. В какой системе счисления велся счет учеников? 2.33.В саду 100q фруктовых деревьев, из них 33q яблони, 22q груши, 16q слив и 5q вишен. В какой системе счисления посчитаны деревья? 2.34.Было 100q яблока. После того как каждое из них разрезали попо­ лам, стало 1000q половинок. В системе счисления с каким основа­ нием вели счет? 2.35.У меня 100 братьев. Младшему 1000 лет, а старшему 1111 лет. Стар­ ший учится в 1001 классе. Может ли такое быть? 2.36.Некогда был пруд, в центре которого рос один лист водяной лилии. Каждый день число таких листьев удваивалось, и на десятый день вся поверхность пруда уже была заполнена листьями лилий. Сколь­ ко дней понадобилось, чтобы заполнить листьями половину пру­ да? Сколько листьев было после девятого дня?. 2.37.Путем подбора степеней числа 2, в сумме дающих заданное число, переведите в двоичную систему счисления следующие числа: а) 5; в) 12; д) 32; б) 7; г) 25; е) 33. Проверить правильность перевода с помощью программы Advan­ced Converter. 2.3. Перевод чисел из одной системы счисления в другую 2.3.1. Перевод целых чисел из одной системы счисления в другую Можно сформулировать алгоритм перевода целых чисел из системы с основанием р в систему с основанием q: 1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие дейст­ вия производить в исходной системе счисления. 2. Последовательно выполнять деление данного числа и по­ лучаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя. 3. Полученные остатки, являющиеся цифрами числа б но­ вой системе счисления, привести в соответствие с алфави­ том новой системы счисления. 4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка. Пример 2.12.Перевести десятичное число 17310 в восьме­ричную систему счисления: ■ Получаем: 17310=2558. Пример 2.13.Перевести десятичное число 17310 в шестнад-цатеричную систему счисления: - Получаем: 17310=AD16. Пример 2.14.Перевести десятичное число 1110 в двоичную систему счисления. Получаем: 111O=10112. Пример 2.15.Иногда более удобно записать алгоритм пере­вода в форме таблицы. Переведем десятичное число 36310 в дво­ичное число. 2.3.2. Перевод дробных чисел из одной системы счисления в другую Можно сформулировать алгоритм перевода правильной дро­би с основанием р в дробь с основанием q: 1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие дейст­ вия производить в исходной системе счисления. 2. Последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или будет достигнута требуемая точность представления числа. 3. Полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в со­ ответствие с алфавитом новой системы счисления. 4. Составить дробную часть числа в новой системе счисле­ ния, начиная с целой части первого произведения. Пример 2.16. Перевести число 0,6562510 в восьмеричную си­стему счисления. Пример 2.17. Перевести число 0,6562510 в шестнадцатерич-ную систему счисления. Пример 2.18. Перевести десятичную дробь 0,562510 в двоич­ную систему счисления. Пример 2.19.Перевести в двоичную систему счисления де­сятичную дробь 0.710. Очевидно, что этот процесс может продолжаться бесконеч­но, давая все новые и новые знаки в изображении двоичного эквивалента числа 0,710. Так, за четыре шага мы получаем число 0,10112,а за семь шагов число 0,10110012,которое явля­ется более точным представлением числа 0,710 в двоичной сис­теме счисления, и так далее. Такой бесконечный процесс обры­вают на некотором шаге, когда считают, что получена требуемая точность представления числа. 2.3.3. Перевод произвольных чисел Перевод произвольных чисел, то есть чисел, содержащих це­лую и дробную части, осуществляется в два этапа. Отдельно пе­реводится целая часть, отдельно - дробная. В итоговой записи полученного числа целая часть отделяется от дробной запятой. Пример 2.20.Перевести число 17,2510 в двоичную систему счисления. Переводим целую часть: Переводим дробную часть: Пример 2.21. Перевести число 124,2510 в восьмеричную сис­тему. 2.3.4. Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2п и обратно Перевод целых чисел- Если основание q-ичной системы счис­ления является степенью числа 2, то перевод чисел из q-ичной системы счисления в двоичную и обратно можно проводить по более простым правилам. Для того чтобы целое двоичное число записать в системе счисления с основанием q = 2", нужно: 1. Двоичное число разбить справа налево на группы по п цифр в каждой. 2. Если в последней левой группе окажется меньше п разря­ дов, то ее надо дополнить слева нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2п. Пример 2.22. Число 1011000010001100102 переведем в во­сьмеричную систему счисления. Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру: Получаем восьмеричное представление исходного числа: 5410628. Пример 2.23. Число 10000000001111100001112 переведем в шестнадцатеричную систему счисления. Разбиваем число справа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру: Получаем шестнадцатеричное представление исходного чис­ла: 200F8716. Перевод дробных чисел. Для того, чтобы дробное двоичное число записать в системе счисления с основанием q = 2", нуж­но: 1. Двоичное число разбить слева направо на группы по п цифр в каждой. 2. Если в последней правой группе окажется меньше п раз­ рядов, то ее надо дополнить справа нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2п. Пример 2.24.Число 0,101100012 переведем в восьмеричную систему счисления. Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру: Получаем восьмеричное представление исходного числа: 0,5428. Пример 2.25. Число 0,1000000000112 переведем в шестнад-цатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру: Получаем шестнадцатеричное представление исходного чис­ла: 0,80316. Перевод произвольных чисел. Для того чтобы произвольное двоичное число записать в системе счисления с основанием q - 2n, нужно: [ 1. Целую часть данного двоичного числа разбить справа на­ лево, а дробную - слева направо на группы по п цифр в каждой. 2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2п. Пример 2.26.Число 111100101,01112 переведем в восьме­ричную систему счисления. Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру: Получаем восьмеричное представление исходного числа: 745,34S. Пример 2.27.Число 11101001000,110100102 переведем в шестнадцатеричную систему счисления. Разбиваем целую и дробную части числа на тетрады и под каждой из них записываем соответствующую шестнадцатерич­ную цифру: Получаем шестнадцатеричное представление исходного чис­ла: 748,D216. Перевод чисел из систем счисленияс основанием q = 2пв двоичную систему.Для того, чтобы произвольное число, запи­санное в системе счисления с основанием q = 2 , перевести в двоичную систему счисления, нужно каждую цифру этого чис­ла заменить ее n-значным эквивалентом в двоичной системе счисления. Пример2.28. Переведем шестнадцатеричное число 4АС351б в двоичную систему счисления. В соответствии с алгоритмом: i Получаем: 10010101100001101012. Задания для самостоятельного выполнения 2.38. Заполните таблицу, в каждой строке которой одно и то же целое число должно быть записано в различных системах счисления. 2.39. Заполните таблицу, в каждой строке которой одно и то же дробное число должно быть записано в различных системах счисления. 2.40. Заполните таблицу, в каждой строке которой одно и то же произво­ льное число (число может содержать как целую, так и дробную часть) должно быть записано в различных системах счисления. 2.4. Арифметические операции в позиционных системах счисления

Арифметические операции в двоичной системе счисления.


Пример 2.29. Рассмотрим несколько примеров сложения двоичных чисел:

Вычитание. При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается мень­шее и ставится соответствующий знак. В таблице вычитания 1 с чертой означает заем в старшем разряде.


Пример 2.31. Рассмотрим несколько примеров умножения двоичных чисел:

Вы видите, что умножение сводится к сдвигам множимого и сложениям.

Деление. Операция деления выполняется по алгоритму, по­добному алгоритму выполнения операции деления в десяти­чной системе счисления.


Сложение в других системах счисления. Ниже приведена таблица сложения в восьмеричной системе счисления:

2.42. Расставьте знаки арифметических операций так, чтобы были верны следующие равенства в двоичной системе:

Ответ для каждого числа запишите в указанной и десятичной систе­мах счисления. 2.44. Какое число предшествует каждому из данных:

2.45. Выпишите целые числа, принадлежащие следующим числовым промежуткам:

а) в двоичной системе;

б) в восьмеричной системе;

в) в шестнадцатеричной системе.

Ответ для каждого числа запишите в указанной и десятичной систе­мах счисления.



2.47. Найдите среднее арифметическое следующих чисел:

2.48.Сумму восьмеричных чисел 17 8 + 1700 8 + 170000 3 + 17000000 8 +
+ 1700000000 8 перевели в шестнадцатеричную систему счисления.
Найдите в записи числа, равного этой сумме, пятую цифру слева.


Восстановите неизвестные цифры, обозначенные знаком вопроса, в
следующих примерах на сложение и вычитание, определив внача­
ле, в какой системе изображены числа.
  1. Место урока: 9 класс-3 урок изучаемого раздела
  2. Тема занятия: Арифметические операции в двоичной системе счисления.

Вид занятия: лекция, беседа, самостоятельная работа.

Цели занятия:

Дидактическая: познакомить правилами выполнения арифметических операций (сложение, умножение, вычитание) в двоичной системе счисления.

Воспитательная: привитие навыков самостоятельности в работе, воспитание аккуратности, дисциплинированности.

Развивающая: развитие внимания, памяти учащихся, развитие умения сопоставлять полученную информацию.

Межпредметные связи: Математика:

Учебное оборудование (оснащение) занятия: проектор, таблица, карточки с заданиями.

Методическое обеспечение занятия: презентация в PowerPoint.

План урока

  1. Организационный момент (2 мин).
  2. Повторение (10)
  3. Объяснение нового материала (15 мин)
  4. Закрепление пройденного материала (10 мин)
  5. задание работы на дом
  6. Рефлексия (2 мин)
  7. Подведение итогов (2 мин)

Ход урока

  1. Организационный момент
  2. Актуализация знаний. Мы с вами продолжаем изучать тему системы счисления и целью нашего сегодняшнего урока будет научиться выполнять арифметические операции в двоичной системе счисления, а именно мы рассмотрим с вами правило выполнения таких операций как сложение, вычитание, умножение, деление.
  3. Проверка знаний (фронтальный опрос).

Давайте с вами вспомним:

  1. Что называется системой счисления?
  2. Что называется основанием системы счисления?
  3. Какое основание имеет двоичная система счисления?
  4. Укажите, какие числа записаны с ошибками и аргументируйте ответ:
    123
    8 , 3006 2 , 12ААС09 20 , 13476 10 ,
  5. Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 10, 21, 201, 1201
  6. Какой цифрой заканчивается четное двоичное число?
    Какой цифрой заканчивается нечетное двоичное число?

4 . Изучение нового материала сопровождается презентацией

/ Приложение 1/

Учитель объясняет новую тему по слайдам презентации,учащиеся конспектируют и выполняют предложенные учителем задания в тетради.

Из всех позиционных систем особенно проста двоичная система счисления. Рассмотрим выполнение основных арифметических действий над двоичными числами.

Все позиционные системы счисления "одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:

1 . справедливы одни и те же законы арифметики: коммутативный, ассоциативный, дистрибутивный;

2 .справедливы правила сложения, вычитания и умножения столбиком;

3. правила выполнения арифметических операций опираются на таблицы сложения и умножения.

Сложение

Рассмотрим примеры на сложение.

При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица.

Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица.

1011022+111112=?

1110112+110112=?

Вычитание

Самостоятельная работа учащихся в тетради для закрепления материала

101101 2 -11111 2 =?

110011 2 -10101 2 =?
Умножение
Рассмотрим примеры на умножение.

Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.
Рассмотрим примеры на умножение
При выполнении умножения в примере 2 складываются три единицы 1+1+1=11 в соответствующем разряде пишется 1, а другая единица переносится в старший разряд.
В двоичной системе счисления операция умножения сводится к сдвигам множимого и сложению промежуточных результатов.
Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Рассмотрим пример на деление

Закрепление (самостоятельная работа учащихся по карточкам выполняется в тетради) /приложение 2/

Для учащихся, которые выполнили самостоятельную работу за короткий промежуток времени, предлагается дополнительное задание.

5. Домашнее задание

2. Выучить правила выполнения арифметических действий в двоичной системе счисления, выучить таблицы сложения, вычитания умножения.

3. Выполните действия:

110010+111,01

11110000111-110110001

10101,101*111

6 Рефлексия

Сегодня на уроке самым познавательным для меня было …

Меня удивило, что …

Полученные сегодня на уроке знания я могу применить …

7. Итоги урока

Сегодня мы научились выполнять арифметические действия в двоичной системе счисления (выставление оценок за урок).

Подписи к слайдам:

Тема урока: «Арифметические операции в позиционных системах счисления»Учитель информатики Федорченко Марина ВалентиновнаМОУ Берёзовская СОШ с Берёзовка Тайшетский район Иркутская Область Давайте с вами вспомним: Что называется системой счисления?Что называется основанием системы счисления?Какое основание имеет двоичная система счисления?Укажите, какие числа записаны с ошибками и аргументируйте ответ:1238, 30062, 12ААС0920, 1347610 , Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 10, 21, 201, 1201Какой цифрой заканчивается четное двоичное число?Какой цифрой заканчивается нечетное двоичное число?
Лаплас писал о своем отношении к двоичной (бинарной) системе счисления великого математика Лейбница: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытие и что высшее существо создает все из небытия точно таким же образом, как единица и нуль в его системе выражают все числа». Эти слова подчеркивают универсальность алфавита, состоящего из двух символов. Все позиционные системы счисления «одинаковы», а именно, во всех них выполняются арифметические операции по одним и тем же правилам:
справедливы одни и те же законы арифметики: --коммутативный (переместительный) m + n = n + m m · n = n · m ассоциативный (сочетательный) (m + n) + k = m + (n + k) = m + n + k (m · n) · k = m · (n · k) = m · n · k дистрибутивный (распределительный) (m + n) · k = m · k + n · k
справедливы правила сложения, вычитания и умножения столбиком;
правила выполнения арифметических операций опираются на таблицы сложения и умножения.
Сложение в позиционных системах счисления Из всех позиционных систем особенно проста двоичная система счисления. Рассмотрим выполнение основных арифметических действий над двоичными числами. Все позиционные системы счисления "одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:справедливы одни и те же: коммутативный, ассоциативный, дистрибутивный;справедливы правила сложения, вычитания и умножения столбиком;правила выполнения арифметических операций опираются на таблицы сложения и умножения. Сложение
При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица. Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица. Рассмотрим примеры Решить примеры самостоятельно:
1011012 + 111112
1110112 + 110112
1001100
1010110
При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак.
Вычитание Рассмотрим примеры Примеры:
1011012– 111112
1100112– 101012
1110
11110
Умножение в позиционных системах счисления Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.Рассмотрим примеры на умножение. Рассмотрим примеры Рассмотрим пример на деление
Решим примеры:
11012 1112

111102:1102=
1011011
101
Домашнее задание 1.&3.1.22.Выучить правила выполнения арифметических действий в двоичной системе счисления, выучить таблицы сложения, вычитания, умножения.3. Выполните действия:110010+111,0111110000111-11011000110101,101*111 РефлексияСегодня на уроке самым познавательным для меня было …Меня удивило, что …Полученные сегодня на уроке знания я могу применить …

Примечание: При сложении двух чисел, равных 1, в данном разряде получается 0, а 1-ца переносится в старший разряд.

Пример_21 : Даны числа 101 (2) и 11 (2) . Найти сумму этих чисел.

где 101 (2) = 5 (10) , 11 (2) = 3 (10) , 1000 (2) = 8 (10) .

Проверка: 5+3=8.

При вычитании из 0 единицы, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 2 единицы в младшем разряде и по единице во всех разрядах между старшим и младшим.

Пример_22 : Даны числа 101 (2) и 11 (2) . Найти разность этих чисел.

где 101 (2) =5 (10) , 11 (2) =3 (10) , 10 (2) =2 (10) .

Проверка: 5-3=2.

Операция умножения сводится к многократному сдвигу и сложению.

Пример_23 : Даны числа 11 (2) и 10 (2) . Найти произведение этих чисел.

где 11 (2) =3 (10) , 10 (2) =2 (10) , 110 (2) =6 (10) .

Проверка: 3*2=6.

Арифметические операции в восьмеричной системе счисления

При сложении двух чисел, в сумме равных 8, в данном разряде получается 0, а 1-ца переносится в старший разряд.

Пример_24 : Даны числа 165 (8) и 13 (8) . Найти сумму этих чисел.

где 165 (8) = 117 (10) , 13 (8) = 11 (10) , 200 (8) = 128 (10) .

При вычитании из меньшего числа большего, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 8 в младшем разряде.

Пример_25 : Даны числа 114 (8) и 15 (8) . Найти разность этих чисел.

где 114 (8) =76 (10) , 15 (8) =13 (10) , 77 (8) =63 (10) .

Арифметические операции в шестнадцатеричной системе счисления

При сложении двух чисел, в сумме равных 16, в данном разряде записывают 0, а 1-ца переносят в старший разряд.

Пример_26 : Даны числа 1B5 (16) и 53 (16) . Найти сумму этих чисел.

где 1B5 (16) = 437 (10) , 53 (16) = 83 (10) , 208 (16) = 520 (10) .

При вычитании из меньшего числа большего, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 16 в младшем разряде.

Пример_27 : Даны числа 11A (16) и 2C (16) . Найти разность этих чисел.

где 11A (16) =282 (10) , 2C (16) =44 (10) , EE (16) =238 (10) .

Кодирование данных в ЭВМ

Данные в компьютере представляются в виде кода, который состоит из единиц и нулей в разной последовательности.

Код – набор условных обозначений для представления информации. Кодирование – процесс представления информации в виде кода.

Коды чисел

При выполнении арифметических операций в ЭВМ применяют прямой, обратный и дополнительный коды чисел.

Прямой код

Прямой код (представление в виде абсолютной величины со знаком) двоичного числа – это само двоичное число, в котором все цифры, изображающие его значение, записываются как в математической записи, а знак числа записывается двоичной цифрой.

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака обычно занимают в памяти один или два байта. Для хранения целых чисел со знаком отводится один, два или четыре байта, при этом старший (крайний левый) разряд отводится под знак числа. Если число положительное, то в этот разряд записывается 0, если отрицательное,- то 1.

Пример_28 :

1 (10) =0 000 0001 (2) , -1 (10) =1 000 0001 (2)


Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда.

Прямой код используется при хранении чисел в памяти ЭВМ, а также при выполнении операций умножения и деления, но формат представления чисел в прямом коде неудобен для использования в вычислениях, поскольку сложение и вычитание положительных и отрицательных чисел выполняется по–разному, а потому требуется анализировать знаковые разряды операндов. Поэтому прямой код практически не применяется при реализации в АЛУ арифметических операций над целыми числами. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода. Вместо этого формата широкое распространение получили форматы представления чисел в обратном и дополнительном кодах.

Обратный код

Обратный код положительного числа совпадает с прямым, а при записи отрицательного числа все его цифры, кроме цифры, изображающей знак числа, заменяются на противоположные (0 заменяется на 1, а 1 - на 0).

Пример_29 :

Пример_30 :

Для восстановления прямого кода отрицательного числа из обратного кода надо все цифры, кроме цифры, изображающей знак числа, заменить на противоположные.

Дополнительный код

Дополнительный код положительного числа совпадает с прямым, а код отрицательного числа образуется путем прибавления 1 к обратному коду.

Пример_31 :

Пример_32 :

Пример_33 :

Для целого числа -32 (10) записать дополнительный код.

1. После перевода числа 32 (10) в двоичную систему счисления получим:

32 (10) =100000 (2) .

2. Прямой код положительного числа 32 (10) равен 0010 0000.

3. Для отрицательного числа -32 (10) прямой код равен 1010 0000.

4. Обратный код числа -32 (10) равен 1101 1111.

5. Дополнительный код числа -32 (10) равен 1110 0000.

Пример_34 :

Дополнительный код числа равен 0011 1011. Найти значение числа в десятичной системе счисления.

1. Первый (знаковый) разряд числа 0 011 1011 равен 0, следовательно, число положительное.

2. У положительного числа дополнительный, обратный и прямой код совпадают.

3. Число в двоичной системе счисления получаем из записи прямого кода – 111011 (2) (нули из старших разрядов отбрасываем).

4. Число 111011 (2) после перевода в десятичную систему счисления равно 59 (10) .

Пример_35 :

Дополнительный код числа равен 1011 1011. Найти значение числа в десятичной системе счисления.

1. Знаковый разряд числа 1 011 1011 равен 1, следовательно, число отрицательное.

2. Для определения обратного кода числа из дополнительного кода вычитаем единицу. Обратный код равен 1 011 1010.

3. Прямой код получаем из обратного заменой всех двоичных цифр числа на противоположные (1 на 0, 0 на 1). Прямой код числа равен 1 100 0101 (в знаковом разряде записываем 1).

4. Число в двоичной системе счисления получаем из записи прямого кода – -100 0101 (2) .

4. Число -1000101 (2) после перевода в десятичную систему счисления равно -69 (10) .


Похожая информация.