Лоду 2 порядка с постоянными коэффициентами онлайн. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Теорема. Если и – линейно независимые решения уравнения (2.3), то их линейная комбинация , где и – произвольные постоянные, будет общим решением этого уравнения.

Доказательство. То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка. Надо только еще показать, что решение будет общим , т.е. надо показать, что при любых начальных условиях , можно выбрать произвольные постоянные и так, чтобы удовлетворить этим условиям. Запишем начальные условия в виде:

Постоянные и из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы есть значение определителя Вронского для линейно независимых решений лоду при : ,

а такой определитель, как мы видели в предыдущем параграфе, отличен от нуля. Теорема доказана.

Построение общего решения ЛОДУ II-го порядка с постоянными коэффициентами в случае

13. простых корней характеристического уравнения (случай D>0) (c док-вом).

14. кратных корней характеристического уравнения (случай D=0) (c док-вом).

15. комплексно-сопряженных корней характеристического уравнения (случай D<0) (c док-вом).

Дано лоду 2-го порядка с постоянными коэффициентами (5.1), где , . Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер. Это метод, который называется методом Эйлера, состоит в том, что частные решения ищутся в виде .

Подставляя эту функцию в уравнение (5.1), после сокращения на , получим алгебраическое уравнение, которое называется характеристическим: (5.2)

Функция будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2). В зависимости от величины дискриминанта возможны три случая.

1. . Тогда корни характеристического уравнения различны: . Решения и будут линейно независимыми, т.к. и общее решение (5.1) можно записать в виде .

2. . В этом случае и . В качестве второго линейно независимого решения можно взять функцию . Проверим, что эта функция удовлетворяет уравнению (5.1). Действительно, , . Подставляя эти выражения в уравнение (5.1), получим

Или , т.к. и .

Частные решения и линейно независимы, т.к. . Следовательно, общее решение (5.1) имеет вид:

3. . В этом случае корни характеристического уравнения комплексно-сопряженные: , где , . Можно проверить, что линейно независимыми решениями уравнения (5.1) будут функции и . Убедимся, что уравнению (5.1) удовлетворяет, например, функция y 1 . Действительно, , . Подставив эти выражения в уравнение (5.1), получим

Обе скобки в левой части этого равенства тождественно равны нулю. Действительно, ,

Таким образом, функция удовлетворяет уравнению (5.1). Аналогично нетрудно убедиться в том, что и есть решение уравнения (5.1). Поскольку , то общее решение будет иметь вид: .

16. Теорема о структуре общего решения ЛНДУ II-го порядка (с док-вом).

Теорема 1. Общее решение лнду 2-го порядка f(x) (6.1)представляется в виде суммы общего решения соответствующего однородного уравнения (6.2)и любого частного решения лнду (6.1).

Доказательство. Докажем сначала, что будет решением уравнения (6.1). Для этого подставим в уравнение (6.1): f(x). Это равенство является тождеством, т.к. и f(x). Следовательно, есть решение уравнения (6.1).

Докажем теперь, что это решение является общим, т.е. можно так выбрать входящие в него произвольные постоянные, что будут удовлетворяться любые начальные условия вида: , (6.3). Согласно теореме о структуре общего решения линейного однородного дифференциального уравнения (лоду) общее решение уравнения (6.2) можно представить в виде , где и – линейно независимые решения этого уравнения. Таким образом: и, следовательно, начальные условия (6.3) можно записать в виде: или (6.4)

Произвольные постоянные и определяются из этой системы линейных алгебраических уравнений однозначно при любых правых частях, т.к. определитель этой системы = есть значение определителя Вронского для линейно независимых решений уравнения (6.2) при , а такой определитель, как мы видели выше, отличен от нуля. Определив постоянные и из системы уравнений (6.4) и подставив их в выражение , мы получим частное решение уравнения (6.1), удовлетворяющее заданным начальным условиям. Теорема доказана.

17. Построение частного решения ЛНДУ II-го порядка в случае правой части вида

Пусть в уравнении (6.1) коэффициенты постоянны, т.е. уравнение имеет вид: f(x) (7.1) где .

Рассмотрим метод отыскания частного решения уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1. f(x) , где – многочлен степени , причем некоторые коэффициенты, кроме , могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение записываем в виде: , где – неопределенные коэффициенты, которые подлежат определению методом неопределенных коэффициентов.

б) Если является корнем кратности соответствующего характеристического уравнения, то частное решение ищем в виде: , где – неопределенные коэффициенты.

18. f(x) , где и - многочлены степени и соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

А) Если число не является корнем характеристического уравнения для уравнения (5.1), то вид частного решения будет: , (7.2) где – неопределенные коэффициенты, а .

Б) Если число является корнем характеристического уравнения для уравнения (5.1) кратности , то частное решение лнду будет иметь вид: , (7.3) т.е. частное решение вида (7.2) надо умножить на . В выражении (7.3) - многочлены с неопределенными коэффициентами, причем их степень .

19. Метод вариации для решения ЛНДУ II-го порядка (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

где – линейно независимые на некотором интервале X решения лоду, а - произвольные постоянные. Будем искать частное решение лнду в форме (8.1), считая, что – не постоянные, а некоторые, пока неизвестные, функции от : . (8.2) Продифференцируем равенство (8.2): . (8.3)

Подберем функции и так, чтобы выполнялось равенство: . Тогда вместо (8.3) будем иметь:

Продифференцируем это выражение еще раз по . В результате получим: . (8.5) Подставим (8.2), (8.4), (8.5) в лнду 2-го порядка f(x):

Или f(x). (8.6)

Так как - решения лоду , то последнее равенство (8.6) принимает вид: f(x).

Таким образом, функция (8.2) будет решением лнду в том случае, если функции и удовлетворяют системе уравнений:

(8.7)

Так как определителем этой системы является определитель Вронского для двух линейно независимых на X решений соответствующего лоду, то он не обращается в ноль ни в одной точке интервала X. Следовательно, решая систему (8.7), найдем и : и . Интегрируя, получи , , где – произв. пост.

Возвращаясь в равенство (8.2), получим общее решение неоднородного уравнения: .

Ряды

1. Числовые ряды. Основные понятия, свойства сходящихся рядов. Необходимый признак сходимости (с док-вом).

Основные определения . Пусть дана бесконечная числовая последовательность . Числовым рядом называется составленная из членов этой последовательности запись . Или .Числа называют членами ряда; , называется общим членом ряда. В результате вычисления значений этой функции при n =1, n =2, n =3, … должны получаться члены ряда .

Пусть дан ряд (18.1.1). Составим из его членов конечные суммы, называемые частичными суммами ряда :

Определение. Если существует конечный предел S последовательности частичных сумм ряда (18.1.1) при , то говорят, что ряд сходится; число S называют суммой ряда и пишут или .

Если не существует (в том числе бесконечен), ряд называется расходящимся .

Свойства сходящихся рядов . Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится к нулю при : Доказательство. Если , то и , но , следовательно .

С проверки выполнения условия надо начинать решение любой задачи на исследование сходимости ряда: если это условие не выполняется, то ряд заведомо расходится. Это условие необходимо, но не достаточно для сходимости ряда: общий член гармонического ряда (18.1.2) , однако этот ряд расходится.

Определение. Остатком ряда после n -го члена называется ряд .


В этой статье мы разберем принципы решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами , где p и q – произвольные действительные числа. Сначала остановимся на теории, далее применим полученные результаты в решении примеров и задач.

Если Вам будут встречаться незнакомые термины, то обращайтесь к разделу определения и понятия теории дифференциальных уравнений .


Сформулируем теорему, которая указывает, в каком виде находить общее решение ЛОДУ.

Теорема.

Общее решение линейного однородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами определяется линейной комбинацией , где - линейно независимые частные решения ЛОДУ на X , а - произвольные постоянные.

Таким образом, общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид y 0 =C 1 ⋅y 1 +C 2 ⋅y 2 , где y 1 и y 2 – частные линейно независимые решения, а С 1 и C 2 – произвольные постоянные. Осталось научиться находить частные решения y 1 и y 2 .

Эйлер предложил искать частные решения в виде .

Если принять частным решением ЛОДУ второго порядка с постоянными коэффициентами , то при подстановке этого решения в уравнение мы должны получить тождество:

Так мы получили так называемое характеристическое уравнение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами. Решения k 1 и k 2 этого характеристического уравнения определяют частные решения и нашего ЛОДУ второго порядка с постоянными коэффициентами.


В зависимости от коэффициентов p и q корни характеристического уравнения могут быть:

В первом случае линейно независимыми частными решениями исходного дифференциального уравнения являются и , общее решение ЛОДУ второго порядка с постоянными коэффициентами есть .

Функции и действительно линейно независимы, так как определитель Вронского отличен от нуля для любых действительных x при .

Во втором случае одним частным решением является функция . В качестве второго частного решения берется . Покажем, что действительно является частным решением ЛОДУ второго порядка с постоянными коэффициентами и докажем линейную независимость y 1 и y 2 .

Так как k 1 = k 0 и k 2 = k 0 совпадающие корни характеристического уравнения, то оно имеет вид . Следовательно, - исходное линейное однородное дифференциальное уравнение. Подставим в него и убедимся, что уравнение обращается в тождество:

Таким образом, является частным решением исходного уравнения.

Покажем линейную независимость функций и . Для этого вычислим определитель Вронского и убедимся, что он отличен от нуля.

Вывод: линейно независимыми частными решениями ЛОДУ второго порядка с постоянными коэффициентами являются и , и общее решение есть при .

В третьем случае имеем пару комплексных частных решений ЛОДУ и . Общее решение запишется как . Эти частные решения могут быть заменены двумя действительными функциями и , соответствующими действительной и мнимой частям. Это хорошо видно, если преобразовать общее решение , воспользовавшись формулами из теории функции комплексного переменного вида :


где С 3 и С 4 – произвольные постоянные.

Итак, обобщим теорию.

Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

Рассмотрим примеры для каждого случая.

Пример.

Найдите общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

Дифференциальные уравнения 2-го порядка

§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="119" height="25 src="> (или Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1..gif" width="85" height="25 src=">.gif" width="85" height="25 src=">.gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src=">..gif" width="39" height="25 src=">.gif" width="265" height="28 src=">.

Таким образом, уравнение 2-го порядка https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="118" height="25 src=">.gif" width="117" height="25 src=">.gif" width="34" height="25 src=">. Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: DIV_ADBLOCK219">


Пример 1. Решить дифференциальное уравнение https://pandia.ru/text/78/516/images/image021_18.gif" width="70" height="25 src=">.gif" height="25 src=">.gif" width="39" height="25 src=">.gif" width="157" height="25 src=">.gif" width="112" height="25 src=">.

Это дифференциальное уравнение с разделяющимися переменными: https://pandia.ru/text/78/516/images/image026_19.gif" width="99" height="41 src=">, т. е..gif" width="96" height="25 src=">.gif" width="53" height="25 src=">.gif" width="48" height="38 src=">..gif" width="99" height="38 src=">..gif" width="95" height="25 src=">.

2..gif" width="117" height="25 src=">, т. е..gif" width="102" height="25 src=">..gif" width="117" height="25 src=">.gif" width="106" height="25 src=">.gif" width="34" height="25 src=">.gif" width="117" height="25 src=">.gif" width="111" height="27 src=">

Решение.

В данное уравнение 2-го порядка явно не входит искомая функция https://pandia.ru/text/78/516/images/image043_16.gif" width="98" height="25 src=">.gif" width="33" height="25 src=">.gif" width="105" height="36 src=">, являющееся линейным уравнением..gif" width="109" height="36 src=">..gif" width="144" height="36 src=">.gif" height="25 src="> от каких-нибудь функций..gif" width="25" height="25 src=">.gif" width="127" height="25 src=">.gif" width="60" height="25 src="> – порядок уравнения понижен.

§2. Линейное дифференциальное уравнение 2-го порядка.

Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид:

https://pandia.ru/text/78/516/images/image059_12.gif" width="42" height="25 src=">.gif" width="42" height="25 src=">.gif" width="42" height="25 src="> и, после введения новых обозначений для коэффициентов, запишем уравнение в виде:

https://pandia.ru/text/78/516/images/image064_12.gif" width="76" height="25 src=">.gif" width="35" height="25 src=">.gif" width="30" height="25 src="> непрерывны..gif" width="165" height="25 src=">.gif" width="95" height="25 src="> – произвольные числа.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – решение лоду

https://pandia.ru/text/78/516/images/image076_10.gif" width="182" height="25 src="> также будет решением этого уравнения.

Доказательство.

Поставим выражение https://pandia.ru/text/78/516/images/image077_11.gif" width="420" height="25 src=">.

Перегруппируем слагаемые:

https://pandia.ru/text/78/516/images/image073_10.gif" width="42" height="25 src=">.gif" width="54" height="25 src=">.gif" width="94" height="25 src="> тоже есть решение этого уравнения.


Следствие 2. Полагая https://pandia.ru/text/78/516/images/image083_11.gif" width="58" height="25 src="> также является решением этого уравнения.

Замечание. Доказанное в теореме свойство решений остается справедливым для лоду любого порядка.

§3. Определитель Вронского.

Определение. Система функций https://pandia.ru/text/78/516/images/image084_10.gif" width="61" height="25 src=">.gif" width="110" height="47 src=">..gif" width="106" height="42 src=">..gif" width="42" height="25 src=">.gif" width="181" height="47 src=">.gif" width="42" height="25 src="> уравнения (2.3)..gif" width="182" height="25 src=">. (3.1)

Действительно, ..gif" width="18" height="25 src="> удовлетворяют уравнению (2..gif" width="42" height="25 src="> – решение уравнения (3.1)..gif" width="87" height="28 src=">..gif" width="182" height="34 src=">..gif" width="162" height="42 src=">.gif" width="51" height="25 src="> получается тождество. Таким образом,

https://pandia.ru/text/78/516/images/image107_7.gif" width="18" height="25 src=">, в которой определитель для линейно независимых решений уравнения (2..gif" width="42" height="25 src=">.gif" height="25 src="> оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – линейно независимые решения уравнения (2..gif" width="19" height="25 src=">.gif" width="129" height="25 src=">есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка..gif" width="85" height="25 src=">.gif" width="19" height="25 src=">.gif" width="220" height="47">

Постоянные https://pandia.ru/text/78/516/images/image003_79.gif" width="19" height="25 src="> из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы https://pandia.ru/text/78/516/images/image006_56.gif" width="51" height="25 src=">:

https://pandia.ru/text/78/516/images/image116_7.gif" width="138" height="25 src=">.gif" width="19" height="25 src=">.gif" width="69" height="25 src=">.gif" width="235" height="48 src=">..gif" width="143" height="25 src="> (5..gif" width="77" height="25 src=">. Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер..gif" width="25" height="26 src=">, получим алгебраическое уравнение, которое называется характеристическим:

https://pandia.ru/text/78/516/images/image124_5.gif" width="59" height="26 src="> будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2)..gif" width="49" height="25 src=">..gif" width="76" height="28 src=">.gif" width="205" height="47 src="> и общее решение (5..gif" width="45" height="25 src=">..gif" width="74" height="26 src=">..gif" width="83" height="26 src=">. Проверим, что эта функция удовлетворяет уравнению (5.1)..gif" width="190" height="26 src=">. Подставляя эти выражения в уравнение (5.1), получим

https://pandia.ru/text/78/516/images/image141_6.gif" width="328" height="26 src=">, т. к..gif" width="137" height="26 src=">.

Частные решения https://pandia.ru/text/78/516/images/image145_6.gif" width="86" height="28 src="> линейно независимы, т. к..gif" width="166" height="26 src=">.gif" width="45" height="25 src=">..gif" width="65" height="33 src=">.gif" width="134" height="25 src=">.gif" width="267" height="25 src=">.gif" width="474" height="25 src=">.

Обе скобки в левой части этого равенства тождественно равны нулю..gif" width="174" height="25 src=">..gif" width="132" height="25 src="> есть решение уравнения (5.1)..gif" width="129" height="25 src="> будет иметь вид:

https://pandia.ru/text/78/516/images/image162_6.gif" width="179" height="25 src="> f(x) (6.1)

представляется в виде суммы общего решения https://pandia.ru/text/78/516/images/image164_6.gif" width="195" height="25 src="> (6.2)

и любого частного решения https://pandia.ru/text/78/516/images/image166_6.gif" width="87" height="25 src="> будет решением уравнения (6.1)..gif" width="272" height="25 src="> f(x). Это равенство является тождеством, т. к..gif" width="128" height="25 src="> f(x). Следовательно.gif" width="85" height="25 src=">.gif" width="138" height="25 src=">.gif" width="18" height="25 src="> – линейно независимые решения этого уравнения. Таким образом:

https://pandia.ru/text/78/516/images/image173_5.gif" width="289" height="48 src=">

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="11" height="25 src=">.gif" width="51" height="25 src=">, а такой определитель, как мы видели выше, отличен от нуля..gif" width="19" height="25 src="> из системы уравнений (6..gif" width="76" height="25 src=">.gif" width="76" height="25 src=">.gif" width="140" height="25 src="> будет решением уравнения

https://pandia.ru/text/78/516/images/image179_5.gif" width="91" height="25 src="> в уравнение (6.5), получим

https://pandia.ru/text/78/516/images/image181_5.gif" width="140" height="25 src=">.gif" width="128" height="25 src="> f(x) (7.1)

где https://pandia.ru/text/78/516/images/image185_5.gif" width="34" height="25 src="> уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1..gif" width="282" height="25 src=">.gif" width="53" height="25 src=">, могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image191_5.gif" width="393" height="25 src=">.gif" width="157" height="25 src=">.

Решение.

Для уравнения https://pandia.ru/text/78/516/images/image195_4.gif" width="86" height="25 src=">..gif" width="62" height="25 src=">..gif" width="101" height="25 src=">.gif" width="153" height="25 src=">.gif" width="383" height="25 src=">.

Обе части сокращаем на https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src="> в левой и правой частях равенства

https://pandia.ru/text/78/516/images/image206_5.gif" width="111" height="40 src=">

Из полученной системы уравнений находим: https://pandia.ru/text/78/516/images/image208_5.gif" width="189" height="25 src=">, а общее решение заданного уравнения есть:

https://pandia.ru/text/78/516/images/image190_5.gif" width="11" height="25 src=">.gif" width="423" height="25 src=">,

где https://pandia.ru/text/78/516/images/image212_5.gif" width="158" height="25 src=">.

Решение.

Соответствующее характеристическое уравнение имеет вид:

https://pandia.ru/text/78/516/images/image214_6.gif" width="53" height="25 src=">.gif" width="85" height="25 src=">.gif" width="45" height="25 src=">.gif" width="219" height="25 src=">..gif" width="184" height="35 src=">. Окончательно имеем следующее выражение для общего решения:

https://pandia.ru/text/78/516/images/image223_4.gif" width="170" height="25 src=">.gif" width="13" height="25 src="> отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image227_5.gif" width="204" height="25 src=">,

где https://pandia.ru/text/78/516/images/image226_5.gif" width="16" height="25 src="> является корнем характеристического уравнения для уравнения (5..gif" width="229" height="25 src=">,

где https://pandia.ru/text/78/516/images/image229_5.gif" width="147" height="25 src=">.

Решение.

Корни характеристического уравнения для уравнения https://pandia.ru/text/78/516/images/image231_4.gif" width="58" height="25 src=">.gif" width="203" height="25 src=">.

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) https://pandia.ru/text/78/516/images/image235_3.gif" width="50" height="25 src=">.gif" width="55" height="25 src=">.gif" width="229" height="25 src=">.

Для определения https://pandia.ru/text/78/516/images/image240_2.gif" width="11" height="25 src=">.gif" width="43" height="25 src="> и подставляем в заданное уравнение:

Приводя подобные члены, приравнивая коэффициенты при https://pandia.ru/text/78/516/images/image245_2.gif" width="46" height="25 src=">.gif" width="100" height="25 src=">.

Окончательно общее решение заданного уравнения имеет вид: https://pandia.ru/text/78/516/images/image249_2.gif" width="281" height="25 src=">.gif" width="47" height="25 src=">.gif" width="10" height="25 src="> соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число https://pandia.ru/text/78/516/images/image255_2.gif" width="605" height="51">, (7.2)

где https://pandia.ru/text/78/516/images/image257_2.gif" width="121" height="25 src=">.

б) Если число https://pandia.ru/text/78/516/images/image210_5.gif" width="80" height="25 src=">, то частное решение лнду будет иметь вид:

https://pandia.ru/text/78/516/images/image259_2.gif" width="17" height="25 src=">. В выражении (7..gif" width="121" height="25 src=">.

Пример 4. Указать вид частного решения для уравнения

https://pandia.ru/text/78/516/images/image262_2.gif" width="129" height="25 src=">..gif" width="95" height="25 src=">. Общее решение лоду имеет вид:

https://pandia.ru/text/78/516/images/image266_2.gif" width="183" height="25 src=">..gif" width="42" height="25 src=">..gif" width="36" height="25 src=">.gif" width="351" height="25 src=">.

Далее коэффициенты https://pandia.ru/text/78/516/images/image273_2.gif" width="34" height="25 src=">.gif" width="42" height="28 src="> есть частное решение для уравнения с правой частью f1(x), а Вариация" href="/text/category/variatciya/" rel="bookmark">вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

https://pandia.ru/text/78/516/images/image278_2.gif" width="46" height="25 src=">.gif" width="51" height="25 src="> – не постоянные, а некоторые, пока неизвестные, функции от f(x). . нужно брать из интервала. В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала, т. е. во всем пространстве – комплексный корень характеристического уравнения..gif" width="20" height="25 src="> линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида.

§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛОДУ второго порядка с постоянными коэффициентами

Характеристическое уравнение:

Случай1. Дискриминант больше нуля

Случай2. Дискриминант равен нулю

Случай3. Дискриминант меньше нуля

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами

§ 10. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛНДУ второго порядка с постоянными коэффициентами

Метод вариации постоянных

Метод решения ЛНДУ со специальной правой частью

Теорема о структуре общего решения ЛНДУ

1. Функция r (x ) – многочлен степени т

2. Функция r (x ) – произведение числа на показательную функцию

3. Функция r (x ) – сумма тригонометрических функций

Алгоритм нахождения общего решения ЛНДУ со специальной правой частью

Приложение


§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Дифференциальное уравнение второго порядка называется линейным однородным дифференциальным уравнением (ЛОДУ) с постоянными коэффициентами , если оно имеет вид:

где p и q

Для нахождения общего решения ЛОДУ достаточно найти два его различных частных решения и . Тогда общее решение ЛОДУ будет иметь вид

где С 1 и С

Леонард Эйлер предложил искать частные решения ЛОДУ в виде

где k – некоторое число.

Дифференцируя эту функцию два раза и подставляя выражения для у , у" и у" в уравнение , получим:

Полученное уравнение называется характеристическим уравнением ЛОДУ. Для его составления достаточно в исходном уравнении заменить у" , у" и у соответственно на k 2 , k и 1:

Решив характеристическое уравнение, т.е. найдя корни k 1 и k 2 ,мы найдем и частные решения исходного ЛОДУ.

Характеристическое уравнение есть квадратное уравнение, его корни находятся через дискриминант

При этом возможны следующие три случая .

Случай 1 . Дискриминант больше нуля , следовательно, корни k 1 и k 2 действительные и различные:

k 1 ¹ k 2

где С 1 и С 2 – произвольные независимые постоянные.

Случай 2 . Дискриминант равен нулю , следовательно, корни k 1 и k 2 действительные и равные:

k 1 = k 2 = k

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные.

Случай 3 . Дискриминант меньше нуля . В этом случае уравнение не имеет действительных корней:

Корней нет.

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные,

Таким образом, нахождение общего решения ЛОДУ второго порядка с постоянными коэффициентами сводится к нахождению корней характеристического уравнения и использованию формул общего решения уравнения (не прибегая к вычислению интегралов).

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами :

1. Привести уравнение к виду , где p и q – некоторые действительные числа.

2. Составить характеристическое уравнение .

3. Найти дискриминант характеристического уравнения.

4. Используя формулы (см. Таблицу 1), в зависимости от знака дискриминанта записать общее решение.

Таблица 1

Таблица возможных общих решений