Построение эпюр продольных сил и нормальных напряжений. Построение эпюр продольных сил и нормальных напряжений, расчет абсолютного удлинения стержня Построить эпюру распределения напряжений по длине стержня

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТУЛЬСКОЙ ОБЛАСТИ

ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МАШИНОСТРОИТЕЛЬНЫЙ

КОЛЛЕДЖ ИМЕНИ НИКИТЫ ДЕМИДОВА

Е. В. МЕЛЬНИКОВА

ПОСТРОЕНИЕ ЭПЮР ПРОДОЛЬНЫХ СИЛ СТЕРЖНЯ

ПРАКТИКУМ

ДЛЯ СТУДЕНТОВ, ОСВАИВАЮЩИХ ПО ДНЕВНОЙ ФОРМЕ ОБУЧЕНИЯ СПЕЦИАЛЬНОСТИ: 220703 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ (ПО ОТРАСЛЯМ); 151901 ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ; 051001 ПРОФЕССИОНАЛЬНОЕ ОБУЧЕНИЕ; 150401 МЕТАЛЛУРГИЯ ЧЕРНЫХ МЕТАЛЛОВ

Тула, 2012

1 Аннотация 3

2 Теоретическое обоснование 4

3 Контрольные вопросы 5

4 Алгоритм решения задач на построение эпюр продольных сил

и нормальных напряжений, расчет абсолютного удлинения

стержня 7

5 Примеры решения задач на построение эпюр продольных сил

и нормальных напряжений, расчет абсолютного удлинения

стержня 8

6 Анализ наиболее часто встречающихся ошибок. Методические

7 Индивидуальные варианты заданий для выполнения

8 Литература 13

Аннотация

Данное пособие составлено в соответствии с требованиями государственного стандарта для специальностей «Технология машиностроения», «Автоматизация технологических процессов и производств», «Литейное производство черных и цветных металлов» и содержит теоретическое обоснование по разделу «Деформации растяжения – сжатия»; методические рекомендации по решению задач; примеры построения эпюр продольных сил и нормальных напряжений, расчетов абсолютного удлинения стержня; вариантов заданий для выполнения практических работ.


Пособие позволяет выполнить практическую работу абсолютно самостоятельно, не используя учебники и справочную литературу , практически без консультаций преподавателя.

Теоретическое обоснование

Растяжением – сжатием называется такой вид деформации, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор – продольная сила N.

Прямые брусья, работающие на растяжение – сжатие, называются стержнями.

Продольной силой называется равнодействующая всех внутренних нормальных сил, возникающих в этом сечении.

Продольная сила в любом напряженном сечении бруса определяется методом сечений, т. е. она равна алгебраической сумме проекций всех внешних сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось.

Если продольная сила по всей длине бруса не постоянна, то строят эпюру «N». Эпюра – это график изменения внутреннего силового фактора по длине бруса.

Правила построения эпюр продольных сил:

1 Разбиваем брус на участки, границами которых являются сечения, где приложены внешние силы.

2 В пределах каждого участка применяют метод сечений и определяют продольную силу. При этом если внешняя сила растягивает оставленную часть стержня, т. е. направлена от сечения - продольная сила положительна; если внешняя сила сжимает оставленную часть стержня, т. е. направлена к сечению – продольная сила отрицательна.

3 Откладываем полученные значения и строим эпюру продольных сил. Если на участке не действует равномерно распределенная нагрузка, то эпюра ограничена прямой, параллельной нулевой линии.

4 Правильность построения эпюр продольных сил определяется следующим образом: в сечениях, где приложена внешняя сила, на эпюре есть «скачки», равные по величине приложенной силе.

При растяжении – сжатии в поперечных сечениях стержня возникают только нормальные напряжения. Если они по длине бруса не постоянны, то строят эпюру «s». При этом используют две гипотезы:

1 Гипотеза Бернулли – сечения плоские и нормальные к продольной оси бруса до деформации, остаются плоскими и нормальными и после деформации.

2 Принцип Сен – Венана.

Распределение напряжений зависит от способа приложения внешних сил лишь в местах, близких к месту расположения сил. На участках, достаточно удаленных от места приложения сил, распределение напряжений зависит лишь от статического эквивалента этих сил, а не от способа приложения.

Правила построения эпюр нормальных напряжений:

1 Разбиваем брус на участки, границами которых являются точки приложения внешних сил и сечения, где меняется площадь.

2 На каждом участке вычисляем нормальные напряжения по формуле

3 Строим эпюру нормальных напряжений, по которой определяем опасное сечение. При растяжении – сжатии опасным является сечение, в котором величина нормальных напряжений наибольшая.

При растяжении длина детали увеличивается, а сечение уменьшается; при сжатии – наоборот.

∆l = l – l0 - абсолютное удлинение.

e = --- - относительное удлинение или продольная деформация.

Закон Гука при растяжении – сжатии: для большинства конструкционных материалов в известных пределах нагружения продольная деформация прямо пропорциональна нормальным напряжениям.


Е – модуль упругости первого рода, величина, постоянная для каждого материала, характеризует жесткость материала, измеряется в тех же единицах, что и напряжение.

Величина абсолютного удлинения вычисляется по формуле Гука:

Контрольные вопросы

1 Какой вид деформации называется растяжением – сжатием?

2 Какие напряжения возникают в поперечных сечениях детали, и как они распределяются по сечению?

3 Для чего строятся эпюры продольных сил и нормальных напряжений?

4 Где проходят границы участков на эпюрах продольных сил и нормальных напряжений?

5 Как определяется величина продольной силы на каждом участке эпюры?

6 Как определяется величина нормального напряжения на каждом участке?

7 Как определяется знак продольной силы и нормального напряжения?

8 В каком случае деталь или участок детали испытывают деформации растяжения, в каком – сжатия?

9 Где находится опасное сечение детали при растяжении – сжатии?

10 Что называется абсолютным удлинением?

11 Что называется относительным удлинением?

12 Сформулируйте закон Гука при растяжении – сжатии.

13 Какой формулой выражается закон Гука при растяжении – сжатии?

14 Что такое модуль упругости первого рода?

15 Напишите формулу Гука.

Если ответы на контрольные вопросы не вызвали у Вас затруднений, это свидетельствует о том, что Вы достаточно хорошо усвоили теоретический материал. Далее внимательно ознакомьтесь с алгоритмом решения задач на построение эпюр продольных сил и нормальных напряжений, расчет абсолютного удлинения стержня, рассмотрите примеры решения задач и приступайте к выполнению практической работы.

УСПЕХОВ И ОТЛИЧНЫХ РЕЗУЛЬТАТОВ!!!

Индивидуальные варианты заданий к практической работе прилагаются в конце данного пособия.

Алгоритм решения задач на построение эпюр продольных сил и

нормальных напряжений, расчет абсолютного удлинения стержня

1 Разбить нулевую линию на участки для построения эпюры продольных сил. Границы участков провести в сечениях, где приложены внешние силы.

2 На каждом участке вычислить продольную силу методом сечений.

3 Отложить полученные значения и построить эпюру продольных сил. Правильность построения контролируется следующим образом: в сечениях, где к стержню приложены внешние силы, на эпюре продольных сил есть «скачки», численно равные этим силам.

4 Разбить нулевую линию на участки для построения Эпюры нормальных напряжений. Границами участков являются сечения, в которых меняется площадь и приложены внешние силы.

5 На каждом участке вычислить нормальное напряжение по формуле

В эту формулу значение продольной силы подставляется с эпюры продольных сил с учетом знака, а значение площади - с чертежа.

6 Отложить полученные значения и построить эпюру нормальных напряжений. По эпюре определить опасное сечение детали. Опасными являются сечения участка, на котором нормальные напряжения наибольшие.

7 Для каждого участка на эпюре нормальных напряжений рассчитать абсолютное удлинение по формуле Гука. В эту формулу значение продольной силы подставляют с эпюры продольных сил с учетом знака; значения длины участка и площади сечения – с чертежа детали.

8 Определить суммарную величину абсолютного удлинения для всей детали в целом. Для этого нужно найти алгебраическую сумму абсолютных удлинений всех участков. При этом если суммарная величина положительна – стержень удлинился, если отрицательна – стержень укоротился.

https://pandia.ru/text/78/131/images/image002_67.jpg" width="683" height="871 src=">

Анализ наиболее часто встречающихся ошибок.

Раздел «Растяжение – сжатие» в целом, и непосредственно решение задач подобного типа не является самым сложным в разделе «Сопротивление материалов», но, в то же время, при решении задач студентами встречается и немало трудностей. Наиболее часты следующие ошибки:

1 Неверные расчеты из – за незнания формул или их неверного применения.

Чтобы избежать подобных ошибок, прежде чем приступать к решению задач, необходимо выучить теорию деформации растяжения – сжатия, а также формулы расчета нормальных напряжений и формулу Гука.

2 Неправильно разбиты на участки нулевые линии при построении эпюр.

Следует помнить, что на эпюре продольных сил границы участков проходят в точках приложения внешних сил, а на эпюре нормальных напряжений – в точках приложения внешних сил и в сечениях, где меняется площадь стержня.

3 При построении эпюры продольных сил неправильно определен знак продольной силы.

Правило знаков следующее: если внешняя сила направлена от сечения, т. е. растягивает оставленную часть стержня – продольная сила положительна; если внешняя сила направлена к сечению, т. е. сжимает оставленную часть стержня – продольная сила отрицательна.

4 Неправильно подставлены значения в формулу нормальных напряжений.

Чтобы правильно подставить значения в формулу нормальных напряжений, нужно с участка эпюры напряжений, для которого ведется расчет, подняться на эпюру нормальных сил и посмотреть, каково значение продольной силы именно на этом участке. Затем подняться на чертеж детали и посмотреть, какова площадь сечения стержня именно на этом участке.

5 Неправильно рассчитаны значения нормальных напряжений из – за неправильного перевода единиц измерения величин, входящих в формулу напряжений.

Чтобы получить значение напряжений в мегапаскалях, в формулу нормальных напряжений продольную силу подставляют в Ньютонах, площадь сечения – в миллиметрах квадратных. Продольную силу также подставляют в формулу с учетом знака.

6 Неправильно рассчитано значение абсолютного удлинения из – за неправильной подстановки значений в формулу Гука.

При расчете абсолютного удлинения в формулу Гука продольную силу следует подставлять с эпюры продольных сил, а величину площади сечения и длины данного участка – с чертежа детали.

7 В формулу нормальных напряжений и формулу Гука вместо продольных сил подставлено значение внешних сил.

Следует помнить, что напряжение – это величина внутреннего усилия, приходящегося на единицу площади. Поэтому в формулу нормальных напряжений и в формулу Гука следует подставлять значение продольной силы для данного участка.

Задание к практической работе

Для заданной схемы нагружения построить эпюру продольных сил, эпюру изгибающих моментов, рассчитать абсолютное удлинение стержня.

Литература

1 Руководство к решению задач по теоретической механике, М.: - «Высшая школа», 2002

2 , Детали машин – М.: «Высшая школа», 2001

Центральным растяжением (сжатием) называется такой вид деформации, при котором в попереч­ных сечениях бруса (стержня) возникает только продольная (нормальная) сила. Считается, что внутрен­няя продольная сила действует вдоль оси стержня, перпендикулярно к его поперечным сечениям. Чис­ленные значения продольных сил N определяют по участкам, используя метод сечений, составляя урав­нения равновесия суммы проекций на ось бруса (z) всех сил, действующих на отсечённую часть.

Рассмотрим (рис. 1.2, а) прямой брус постоянной толщины, закреплённый одним концом и нагру­женный на другом конце силой Р , направленной вдоль его оси. Под действием закрепления и внешней силы Р брус растягивается (деформируется). При этом в закреплении возникает некоторое усилие, бла­годаря которому верхний край брусаостаётсянеподвижным. Это усилие называют реакцией закрепле­ния на внешнюю нагрузку. Заменим влияние закрепления на стержень эквивалентно действующей си­лой. Эта сила равна реакции закрепления R (рис. 1.2, б).

Р и неизвестной пока реакции R-

При построении уравнений общего равновесия механики принято следующее правило знаков: про­екция усилия на ось положительна, если её направление совпадает с выбранным направлением этой оси, проекция отрицательна, если направлена в противоположную сторону.

п-п (рис. 1.2, б). n-п нор­мальной силы N (рис. 1.2, в). Уравнение равновесия нижней отсечённой части бруса:

График изменения продольной силы вдоль оси бруса показан на рис. 1.2, г. График, показывающий изменение продольных сил по длине оси бруса, называется эпюрой продольных сил (эпюрой N ).

Пример. Построить эпюру внутренних нормальных сил, возникающих под действием трёх внеш­них сил (см. рис. 1.3): Р 1 =5 кН, P 2 = 8 кН, Р 3 , = 7 кН (см. рис. 1.3, а).

Используя метод сечений, определим значения внутренней силы в характерных поперечных сече­ниях бруса.

Уравнение равновесия нижней отсчетной части бруса:

сечение II-II

cечение I-I

сечение III-III

ƩZ= 0; -N+ Р 1 - Р 2 + Р 3 =0 или N=Р 1 -Р 2 + Р 3 =4 кН.

Строим эпюру нормальных сил (см. рис. 1.3,б)

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодейст­вующую внутренних нормальных сил, распределённых по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью



Под действием двух внешних воздействий: известной силы Р и неизвестной пока реакции R- брус находится в равновесии. Уравнение равновесия бруса

При построении уравнений общего равновесия механики принято следующее правило знаков: проекция усилия на ось положительна, если её направление совпадает с выбранным направлением этой оси, проекция отрицательна, если направлена в противоположную сторону.

Мысленно разрежем стержень на две части по интересующему нас сечению п-п (рис. 1.2, б). Влияние на нижнюю часть верхней части представим действием на нижнюю часть в её верхнем торце п-п нормальной силы N (рис. 1.2, в). Уравнение равновесия нижней отсечённой части бруса

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодействующую внутренних нормальных сил, распределённых по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью

здесь σ - нормальное напряжение в произвольной точке поперечного сечения, принадлежащей элемен­тарной площадке dF; F- площадь поперечного сечения бруса.

Произведение σdF=dN представляет собой элементарную внутреннюю силу, приходящуюся на площадку dF.

Значение продольной силы N в каждом частном случае легко можно определить при помощи мето­да сечений. Для нахождения напряжений в каждой точке поперечного сечения бруса надо знать закон их распределения по этому сечению.

Проведём на боковой поверхности бруса до его нагружения линии, перпендикулярные к оси бруса (рис. 1.4, а).

Каждую такую линию можно рассматривать как след плоскости поперечного сечения бруса. При нагружении бруса осевой силой Р эти линии, как показывает опыт, остаются прямыми и параллельными между собой (их положения после нагружения бруса показаны на рис. 1.4, б).


Это позволяет считать, что поперечные сечения бруса, плоские до его

на­гружения, остаются плоскими и при действии нагрузки. Такой опыт

Рис. 1.4. Деформирование бруса

подтвер­ждает гипотезу плоских сечений (гипотезу Бернулли).

Согласно гипотезе плоских сечений, все продольные волокна бруса растяги­ваются одинаково, значит их растягивают одинаковые по величине силы о dF = dN, следовательно, во всех точках поперечного сечения нормальное на­пряжение о имеет постоянное значение.

В поперечных сечениях бруса при центральном растяжении или сжатии возникают равномерно распределённые нормальные напряжения, равные от­ношению продольной силы к площади поперечного сечения .

Для наглядного изображения изменения нормальных напряжений в поперечных сечениях стержня (по его длине) строится эпюра нормальных напряжений . Осью этой эпюры является отрезок прямой, равный длине стержня и параллельный его оси. При стержне постоянного сечения эпюра нормальных напряжений имеет такой же вид, как и эпюра продольных сил (она отличается от неё лишь принятым масштабом). При стержне же переменного сечения вид этих двух эпюр различен; в частности, для стержня со ступенчатым законом изменения поперечных сечений эпюра нормальных напряжений имеет скачки не только в сечениях, в которых приложены сосредоточенные осевые нагрузки (где имеет скачки эпюра продольных сил), но и в местах изменения размеров поперечных сечений.

Все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижная опора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление , или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной - в противном случае.

Пример 1. Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные - под осью.

3. Построение эпюр крутящих моментов Мкр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр : условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным - в противном случае.

Пример 2. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил .

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр Nz и Мкр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) - прямая, параллельная оси, а на участке под распределенной нагрузкой - наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой . В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

Порядок расчета .

1. Намечаем характерные сечения.

Определение перемещений

Задание

Для заданного статически определимого стального бруса требуется:

1) построить эпюры продольных сил N и нормальных напряжений σ, записав в общем виде для каждого участка выражения N и σ и указав на эпюрах их значения в характерных сечениях;

2) определить общее перемещение бруса и построить эпюру перемещений δ поперечных сечений, приняв модуль упругости Е = 2·10 МПа.

Цель работы научиться строить эпюры продольных сил и нормальных напряжений, и определять перемещения.

Теоретическое обоснование

Виды нагружения бруса, при котором в его поперечном сечении возникает только один внутренний силовой фактор – , называемый растяжением или сжатием . Равнодействующая внешних сил прикладывается в центре тяжести поперечного сечения и действует вдоль продольной оси. Внутренние силы определяются с помощью метода сечений. Нормальная сила в сечении бруса является равнодействующей нормальных напряжений, действующих в плоскости поперечного сечения

N = ∑F (5.1).

Величина продольных сил в разных сечениях бруса неодинакова. График, показывающий изменение величины продольных сил в сечении бруса по его длине, называется эпюрой продольных сил.

Закон распределения напряжений может быть определен из эксперимента. Установлено, что если на стержень нанести прямоугольную сетку, то после приложения продольной нагрузки вид сетки не изменится, она по-прежнему останется прямоугольной, а все линии прямыми. Поэтому можно сделать вывод о равномерном по сечению распределении продольных деформаций, а на основании закона Гука (σ = Eε ) и нормальных напряжений S = const. Тогда N = S· F , откуда получим формулу для определения нормальных напряжений в поперечном сечении при растяжении

σ = МПа (5.2)

A – площадь около рассматриваемого участка бруса;

N– равнодействующая внутренних сил в пределах этой площадки (согласно метода сечений).

Для обеспечения прочности стержня должно выполняться условие прочности - конструкция будет прочной, если максимальное напряжение ни в одной точке нагруженной конструкции не превышает допускаемой величины, определяемой свойствами данного материала и условиями работы конструкции, то есть

σ ≤ [σ ], τ ≤ [τ] (5.3)

При деформации бруса меняется его длина на и поперечный размер – на . Эти величины зависят и от начальных размеров бруса.

Поэтому рассматривают

– продольная деформация; (5.4)

– поперечная деформация. (5.5)

Экспериментально показано, что , где μ = 0, …, 0,5 – коэффициент Пуассона. Примеры: μ=0 – пробка, μ=0,5 – резина, – сталь.

В пределах упругой деформации выполняется закон Гука: , где E – модуль упругости, или модуль Юнга.

Порядок выполнения работы

1. Разбиваем брус на участки, ограниченные точками приложения сил (нумерацию участков ведем от незакрепленного конца);

2. Используя метод сечений, определяем величину продольных сил в сечении каждого участка: N = ∑F ;

3. Выбираем масштаб и строим эпюру продольных сил, т.е. под изображением бруса (или рядом) проводим прямую, параллельную его оси, и от этой прямой проводим перпендикулярные отрезки, соответствующие в выбранном масштабе продольным силам (положительное значение откладываем вверх (или вправо), отрицательное – вниз (или влево).

4. Определяем общее перемещение бруса и строим эпюру перемещений δ поперечных сечений.

5. Ответить на контрольные вопросы.

Контрольные вопросы

1. Что называется стержнем?

2. Какой вид нагружения стержня называются осевым растяжением (сжатием)?

3. Как вычисляется значение продольной силы в произвольном поперечном сечении стержня?

4. Что такое эпюра продольных сил и как она строится?

5. Как распределены нормальные напряжения в поперечных сечениях центрально-растянутого или центрально-сжатого стержня, и по какой формуле они определяются?

6. Что называется удлинением стержня (абсолютной продольной деформацией)? Что такое относительная продольная деформация? Каковы размерности абсолютной и относительной продольных деформаций?

7. Что называется модулем упругости Е? Как влияет величина Е на деформации стержня?

8. Сформулируйте закон Гука. Напишите формулы для абсолютной и относительной продольных деформаций стержня.

9. Что происходит с поперечными размерами стержня при его растяжении (сжатии)?

10. Что такое коэффициент Пуассона? В каких пределах он изменяется?

11. С какой целью проводятся механические испытания материалов? Какие напряжения являются опасными для пластичных и хрупких материалов?

Пример выполнения

Построить эпюры продольных сил и нормальных напряжений для нагруженного стального бруса (рис. 5.1). Определить удлинение (укорочение) бруса, если E

Рис.5.1

Дано: F = 2 kH, F = 5 kH, F = 2 kH, A = 2 см , А , l = 100 мм, l = 50 мм, l = 200 мм,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ

Государственное бюджетное образовательное учреждение

среднего профессионального образования

«ПЕРЕВОЗСКИЙ СТРОИТЕЛЬНЫЙ КОЛЛЕДЖ»

Методическая разработка учебного занятия

тема «Построение эпюр продольных сил, нормальных напряжений и перемещений»

Организация-разработчик: ГБОУ СПО «Перевозский строительный колледж»

Разработчик: М.Н. Кокина

Методическая разработка учебного занятия на тему «Построение эпюр продольных сил, нормальных напряжений и перемещений» по дисциплине «Техническая механика»/ Перевозский строит. колледж; Разр.: М.Н. Кокина. – Перевоз, 2014. –18 с.

В данной работе указаны цель учебного занятия, задачи. Подробно рассмотрен ход занятия, в приложении представлен демонстрационный и раздаточный материал. Методическая разработка написана с целью систематизации учебного материала.

Методическая разработка предназначена для преподавателей и студентов, обучающихся по специальности 270802, 08.02.01 «Строительство и эксплуатация зданий и сооружений».

Работа может быть использована при проведении, занятий, открытого занятия, олимпиады. Студентам может быть полезна при подготовке к зачету, экзамену.

Введение

Методическая разработка учебного занятия на тему «Построение эпюр продольных сил, нормальных напряжений и перемещений» по дисциплине «Техническая механика» предназначена для студентов 2 курса, специальности 270802, 08.02.01 «Строительство и эксплуатация зданий и сооружений».

Выбор указанной темы обусловлен тем, что данные понятия и методы являются опорной базой для целого ряда технических дисциплин.

В ходе учебного занятия использовались:

    компьютерные и мультимедийные технологии;

    интерактивная доска;

  • объяснительно-иллюстративный, репродуктивный, частично-поисковый методы обучения;

    раздаточные материалы.

В ходе изучения темы «Построение эпюр продольных сил, нормальных напряжений и перемещений» у обучающихся формируются следующие компетенции:

    ПК 1.3.Выполнять несложные расчеты и конструирование строительных конструкций.

    ОК 1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

    ОК 2 Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

    ОК 3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

    ОК 4 Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.

    ОК 5 Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.

    ОК 6 Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.

    ОК 7 Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.

План-конспект открытого учебного занятия по дисциплине «Техническая механика»

Преподаватель: Кокина Марина Николаевна

Группа: 2-131, специальность 270802 «Строительство и эксплуатация зданий и сооружений».

Тема занятия: Построение эпюр продольных сил, напряжений и перемещений

Вид занятия: практическое.

Тип занятия: комбинированный урок с использованием компьютерных и мультимедийных технологий с элементами игры.

Форма проведения: работа в группах, самостоятельная работа.

Межпредметная связь: «Математика»,«Материаловедение», «Физика».

Основная цель учебного занятия: Научиться строить эпюры продольных сил, напряжений и определять перемещение для бруса при растяжении или сжатии.

Задачи учебного занятия:

Учебная:

– рассмотреть алгоритм нахождения продольной силы методом сечений и построения ее эпюры;

Научиться вычислять нормальное напряжение для растяжения или сжатия в поперечном сечении для ступенчатого бруса и строить эпюру для данного напряжения;

Научиться определять перемещение свободного конца бруса.

Развивающая:

Развитие интеллектуальных качеств обучающихся, познавательного интереса и способностей;

Развитие умения использовать полученные знания.

Воспитательная:

– формирование сознательного отношения к изучаемому материалу;

– воспитание культуры труда, формирование навыков самостоятельной работы.

Методы обучения:

    Объяснительно-иллюстративный.

    Репродуктивный.

    Частично-поисковый.

Средства обучения:

– интерактивная доска;

– ноутбук.

Раздаточный материал:

Карточки-задания;

Учебная литература:

    Олофинская, В.П. Техническая механика. – М.: ФОРУМ-ИНФРА-М, 2011

    Олофинская, В.П. Техническая механика. Сборник тестовых заданий. – М.: ФОРУМ, 2011

Подготовка к занятию

1.Разбить группу на две равносильные команды.

2.Выдать задания командам:

a) Выбрать капитана;

b) Придумать название команды и ее девиз;

c) Составить кроссворд по теме «Растяжение и сжатие» (10 слов);

План учебного занятия

    Организационный момент (3 минуты);

    Актуализация ранее полученных знаний. (12 минут);

    Актуализация материала на примере решения задач (15 минут);

    Закрепление материала (55 минут);

    Подведение итогов и результатов занятий (5 минут);

Ход занятия

    Организационный момент. (3 минуты)

      1. Проверка присутствующих. Объявление темы и целей занятия. (Слайд 1)

        Представление жюри. В состав жюри входят приглашенные преподаватели. (По ходу занятия члены жюри вносят баллы в итоговую ведомость – приложение 1).

        Знакомство с командами. Визитная карточка. (5 баллов)

    Актуализация ранее полученных знаний. (12 минут)

Мы изучили тему «Растяжение и сжатие прямого бруса» в разделе «Сопротивление материалов». Познакомились с основными понятиями и определениями. Изучили методику нахождения величины внутренних усилий. Рассмотрели принципы построения эпюр. Сегодня мы в течение занятия повторим эту тему, обобщим и систематизируем полученные знания, отработаем навыки вычисления внутренних усилий и напряжений и построения их эпюр. Работать будем в командах. Но, прежде, чем приступить к решению, давайте повторим теоретический материал.

Разминка (фронтальный опрос).

Сейчас мы с вами проведем небольшой блиц-опрос по теме «Растяжение и сжатие прямого бруса». Каждой команде по очереди предстоит ответить на вопросы. Право первого ответа мы разыграем с помощью интерактивного игрального кубика. Если выпадает четное число, то первой отвечает вторая команда, если нечетное – первая.

Правильный ответ – 10 баллов.

    Дайте определение понятия Сопротивление материалов (Слайд 2)

    Установите соответствие между понятиями и определениями (Слайд 3).

    Покажите на схеме положение внутренних усилий. (Слайд 4)

    Какой внутренний силовой фактор возникает при растяжении или сжатии? (Слайд 5)

    Какой метод используется для определения продольной силы? (Слайд 6).

    Установите порядок выполнения действий метода сечений? (Слайд 7).

    Как называется диаграмма, график, показывающий изменение какой-либо величины по длине бруса. (Слайд 8).

    Кто вывел данную экспериментальную формулу? (Слайд 9).

    Что понимается под напряжением? (Слайд 10)

    Составить формулу для определения нормального напряжения при растяжении или сжатии. (Слайд 11)

3. Актуализация материала на примере решения задач (15 минут)

Ознакомиться с примером построения эпюр продольных сил, напряжений и перемещений. (Слайд 12)

Задача 1. Двухступенчатый стальной брус нагружен силами F 1 =30 кН F 2 =40 кН.

l свободного конца бруса, приняв Е=2∙10 5 МПа. Площади поперечных сечений А 1 =1,5см 2 ;А 2 =2см 2 .

Разбить брус на участки, начиная от свободного конца. Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и место изменения размеров поперечного сечения.

Определить по методу сечений продольную силу для каждого участка (ординаты эпюры N ) и построить эпюры продольных сил N . Проведя – параллельно оси бруса базовую (нулевую) линию эпюры, отложить перпендикулярно ей в произвольном масштабе получаемые значения ординат. Через концы ординат провести линии, проставить знаки и заштриховать эпюру линиями, параллельными ординатам.

Для построения эпюры нормальных напряжений определяем напряжения в поперечных сечениях каждого из участков. В пределах каждого участка напряжения постоянные, т.е. эпюра на данном участке изображается прямой, параллельной оси бруса.

Перемещение свободного конца бруса определяем как сумму удлинений (укорочений) участков бруса, вычисленных по формуле Гука.

Разбиваем брус на участки.

Определяем ординаты эпюры N на участках бруса:

N 1 = - F 1 = -30кН

N 2 = - F 2 = -30кН

N 3 = -F 1 +F 2 = -30+40=10 кН

Строим эпюру продольных сил

Вычисляем ординаты эпюры нормальных напряжений

σ 1 ==
= –200МПа

σ 2 ==
= –150МПа

σ 3 ==
= 50МПа

Строим эпюры нормальных напряжений.

4. Проверяем прочность бруса, если допускаемое напряжение [σ ] = 160 МПа.

Выбираем максимальное по модулю расчетное напряжение. Iσ max I = 200 МПа

Подставляем в условие прочности Iσ max I ≤ [σ ]

200 МПа ≤ 160 МПа. Делаем вывод, что прочность не обеспечена.

5. Определяем перемещение свободного конца бруса Е = 2∙10 5 МПа.

l =∆l 1 +∆l 2 +∆l 3

l 1 =
=
= – 0,5мм

l 2 =
=
= – 0,225мм

l 3 =
=
= 0,05мм

l = - 0,5 – 0,225 + 0,05 = – 0,675мм

Брус укоротился на 0,675мм

    Закрепление материала. (55 минут) (Слайд 13, Слайд 14)

    Задание – эстафета (25 минут)

Двухступенчатый стальной брус нагружен силами F 1 , F 2 .

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Проверить прочность бруса, если допускаемое напряжение [σ ] = 160 МПа. Определить перемещение ∆l свободного конца бруса, приняв Е=2∙10 5 МПа. Площади поперечных сечений А 1 =5 см 2 ;А 2 =10 см 2 . Длина l = 0,5 м. Первая команда F 1 = 50 кН, F 2 = 30 кН. Вторая команда F 1 = 30 кН, F 2 = 50 кН.

F 1

l l l


l l l

Задание каждого этапа эстафеты – 5 баллов

1 этап эстафеты (по 1 человеку от команды)

Разбить брус на участки. Пронумеровать эти участки.

2 этап эстафеты (по 1 человеку от команды)

Найти величину продольной силы на первом участке.

3 этап эстафеты (по 1 человеку от команды)

Найти величину продольной силы на втором участке.

4 этап эстафеты (по 1 человеку от команды)

Найти величину продольной силы на третьем участке.

5 этап эстафеты (по 1 человеку от команды)

Построить эпюру для продольной силы.

6 этап эстафеты (по 1 человеку от команды)

Найти величину нормального напряжения на первом участке.

7 этап эстафеты (по 1 человеку от команды)

Найти величину нормального напряжения на втором участке.

8 этап эстафеты (по 1 человеку от команды)

Найти величину нормального напряжения на третьем участке.

9 этап эстафеты (по 1 человеку от команды)

Построить эпюру для нормального напряжения.

10 этап эстафеты (по 1 человеку от команды)

Проверить прочность бруса. Допускаемое напряжение [σ ] = 160 МПа.

11 этап эстафеты (конкурс капитанов) – 10 баллов

Определить перемещение свободного конца бруса.

    1. Работа в группах (Карточки с заданиями) (10 минут) (Слайд 15)

Каждой команде необходимо выполнить задание. Задания мы разыграем с помощью интерактивного игрального кубика. Если выпадает нечетное число, то первое задание достается первой команде, если четное – то второй. Второе задание автоматически переходит к другой команде. Время выполнения – 10 минут задано на интерактивном таймере. (Карточки – задания приложение 2)

    1. Разгадывание кроссвордов. (10 минут) (Слайд 16)

Команды отгадывают кроссворд, составленный соперниками. Время разгадывания – 10 минут задано на интерактивном таймере.

Каждый правильный ответ 5 баллов.

    1. Творческое задание. (10 минут) (Слайд 17)

Сочинить стихотворение со словами:

Растяжение

Сжатие

Эпюра

Сила

Прочность

Выполнение данного задания - 10 баллов.

    Подведение итогов (5 минут) (Слайд 18)

Заполнить таблицу:

Я знал

Я узнал

Я хочу узнать

Пока обучающиеся заполняют таблицу, жюри подсчитывает количество баллов, набранное каждой командой.

Объявление победителей. Выставление оценок.

Спасибо за работу на занятии! (Слайд 19)

Приложения

Приложение 1.

Итоговая ведомость

Вид задания

1 команда

Название

Капитан

2 команда

Название

Капитан

Визитная карточка команды

Максимальное количество баллов - 5

Фронтальный опрос

За каждый правильный ответ

Эстафета

1 этап эстафеты

Максимальное количество баллов – 5

2 этап эстафеты

Максимальное количество баллов – 5

3 этап эстафеты

Максимальное количество баллов – 5

4 этап эстафеты

Максимальное количество баллов – 5

5 этап эстафеты

Максимальное количество баллов – 5

6 этап эстафеты

Максимальное количество баллов – 5

7 этап эстафеты

Максимальное количество баллов – 5

8 этап эстафеты

Максимальное количество баллов – 5

9 этап эстафеты

Максимальное количество баллов – 5

10 этап эстафеты

Максимальное количество баллов – 5

11 этап эстафеты (конкурс капитанов)

Работа в группах (карточки с заданиями)

Максимальное количество баллов – 10

Разгадывание кроссвордов