Что больше протон или электрон. Строение атома: ядро, нейтрон, протон, электрон

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро - центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы - протона.


Диаметр ядра атома равен примерно 10-13 - 10-12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95-99,98%) сосредоточена в ядре. Если бы удалось получить 1 см3 чистого ядерного вещества, масса его составила бы 100-200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.


Протон - элементарная частица, ядро атома водорода. Масса протона равна 1,6721 х 10-27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66 х 10-19 Кл. Кулон - единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).


Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон - это водород, если 26 протонов - это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).


Нейтрон - электрически нейтральная частица с массой 1,6749 х 10-27кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии - нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой - А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A - Z.


Электрон - элементарная частица, носитель наименьшей массы - 0,91095х10-27г и наименьшего электрического заряда - 1,6021х10-19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.


Позитрон - элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.


Различные типы ядер называют нуклидами. Нуклид - вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом):
, Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.


Обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А - массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32Р, 33Р или Р и Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор - 32, фосфор - 33.


Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1Н-протия, известен тяжелый водород 2Н-дей-терий и сверхтяжелый водород 3Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.


В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.


Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, углерода 12С и 14С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90Sr, 131J, 137Cs.

  • Перевод

Рис. 1: атом водорода. Не в масштабе.

Вы знаете, что Большой адронный коллайдер в основном занимается тем, что сталкивает друг с другом протоны. Но что такое протон?

В первую очередь – ужасная и полная неразбериха. Настолько же уродливая и хаотичная, насколько прост и элегантен атом водорода.

Но что тогда такое атом водорода?

Это простейший пример того, что физики называют «связанным состоянием». «Состояние», по сути, означает некую штуку, существующую довольно долгое время, а «связанное» означает, что её компоненты связаны друг с другом, будто супруги в браке. На самом деле, пример супружеской пары, в которой один супруг гораздо тяжелее другого, сюда очень хорошо подходит. Протон сидит в центре, едва двигаясь, а по краям объекта движется электрон, движется быстрее, чем вы и я, но гораздо медленнее скорости света, всеобщего скоростного ограничения. Мирный образ брачной идиллии.

Или он кажется таким, пока мы не заглянем в сам протон. Внутренности самого протона больше напоминают коммуну, где плотно расположено множество холостых взрослых и детей: чистый хаос. Это тоже связанное состояние, но связывает оно не нечто простое, вроде протона с электроном, как в водороде, или хотя бы несколько десятков электронов с атомным ядром, как в более сложных атомах типа золота – но несметное количество (то есть, их слишком много и они слишком быстро меняются, чтобы их можно было подсчитать практически) легковесных частиц под названием кварки, антикварки и глюоны. Невозможно просто описать структуру протона, нарисовать простые картинки – он чрезвычайно дезорганизован. Все кварки, глюоны, антикварки, мечутся внутри с максимально возможной скоростью, почти со скоростью света.


Рис. 2: Изображение протона. Представьте, что все кварки (верхний, нижний, странный - u,d,s), антикварки (u,d,s с чёрточкой), и глюоны (g) снуют туда-сюда почти со скоростью света, сталкиваются друг с другом, появляются и исчезают

Вы могли слышать, что протон состоит из трёх кварков. Но это ложь – во благо, но всё же довольно большая. На самом деле в протоне существует несметное количество глюонов, антикварков и кварков. Стандартное сокращение «протон состоит из двух верхних кварков и одного нижнего кварка» просто говорит о том, что в протоне на два верхних кварка больше, чем верхних антикварков, и на один нижний кварк больше, чем нижних антикварков. Чтобы это сокращение стало верным, необходимо добавлять к нему «и ещё несметные количества глюонов и пар кварк-антикварк». Без этой фразы представление о протоне будет настолько упрощённым, что понять работу БАК будет совершенно невозможно.


Рис. 3: Маленькая ложь во благо на стереотипном изображении из Википедии

В общем, атомы по сравнению с протонами похожи на па-де-де в изысканном балете по сравнению с дискотекой, заполненной пьяными подростками, прыгающими и машущими диджею.

Именно поэтому, если вы – теоретик, пытающийся понять, что увидит БАК в столкновениях протонов, вам будет сложно. Очень сложно предсказывать результаты столкновений объектов, которые нельзя описать простым способом. Но, к счастью, с 1970-х годов, на основе идей Бьёркена из 60-х, физики-теоретики нашли относительно простую и рабочую технологию. Но она всё же работает до определённых пределов, с точностью порядка 10%. По этой и некоторым другим причинам надёжность наших подсчётов на БАК всегда ограничена.

Ещё одна деталь по поводу протона – он крохотный. Реально крохотный. Если раздуть атом водорода до размеров вашей спальни, протон будет размером с такую маленькую крупицу пыли, что её будет очень трудно заметить. Именно потому, что протон настолько мал, мы можем игнорировать творящийся внутри него хаос, описывая атом водорода как простой. Точнее, размер протона в 100000 раз меньше размера атома водорода.

Для сравнения, размер Солнца всего в 3000 раз меньше размера Солнечной системы (если считать по орбите Нептуна). Именно так – в атоме более пусто, чем в Солнечной системе! Вспоминайте об этом, когда смотрите на небо ночью.

Но вы можете спросить: «Секундочку! Вы утверждаете, что Большой адронный коллайдер как-то сталкивает протоны, имеющие в 100000 раз меньшие размеры, чем атом? Да как это вообще возможно?»

Отличный вопрос.

Столкновения протонов против мини-столкновений кварков, глюонов и антикварков

Столкновения протонов на БАК происходят с определённой энергией. Это было 7 ТэВ = 7000 ГэВ в 2011 году, и 8 ТэВ = 8000 ГэВ в 2012-м. Но специалистам по физике частиц в основном интересны столкновения кварка одного протона с антикварком другого протона, или столкновениях двух глюонов, и т.п. – то, что может привести к появлению по-настоящему нового физического явления. Эти мини-столкновения несут в себе малую долю общей энергии столкновения протонов. Насколько большую часть этой энергии они могут переносить, и зачем нужно было увеличивать энергию столкновений с 7 ТэВ до 8 ТэВ?

Ответ – на рис. 4. На графике показано количество столкновений, зафиксированных в детекторе ATLAS. В данных от лета 2011 года участвуют рассеяние кварков, антикварков и глюонов с других кварков, антикварков и глюонов. Такие мини-столкновения чаще всего производят два джета (струи адронов, проявления высокоэнергетических кварков, глюонов или антикварков, выбитых из родительских протонов). Измеряют энергии и направления джетов, и из этих данных определяют количество энергии, которое должно было участвовать в мини-столкновении. На графике показано количество мини-столкновений такого типа в виде функции энергии. Вертикальная ось логарифмическая – каждая чёрточка обозначает увеличение количества в 10 раз (10 n обозначает 1 и n нулей после него). К примеру, количество мини-столкновений наблюдаемых в промежутке энергий от 1550 до 1650 ГэВ равнялось порядка 10 3 = 1000 (отмечено голубыми линиями). Учтите, что график начинается с энергии в 750 ГэВ, но количество мини-столкновений продолжает расти, если вы изучаете джеты с меньшими энергиями, вплоть до момента, когда джеты становятся слишком слабыми, чтобы их засечь.


Рис. 4: количество столкновений как функция энергии (m jj)

Учтите, что общее количество столкновений протон-протон с энергией в 7 ТэВ = 7000 ГэВ приблизилось к 100 000 000 000 000. И из всех этих столкновений только два мини-столкновения превысили отметку 3500 ГэВ – половину энергии столкновения протонов. Теоретически энергия мини-столкновения может возрасти до 7000 ГэВ, но вероятность этого всё время падает. Мы настолько редко видим мини-столкновения с энергией 6000 ГэВ, что вряд ли увидим энергию в 7000 ГэВ, даже если соберём в 100 раз больше данных.

В чём же преимущества повышения энергии столкновения от 7 ТэВ в 2010-2011 годах до 8 ТэВ в 2012-м? Очевидно, что теперь то, что вы могли делать на уровне энергии E, теперь вы можете сделать на уровне энергии в 8/7 E ≈ 1.14 E. Так что, если прежде можно было надеяться увидеть в таком количестве данных признаки определённого типа гипотетической частицы с массой в 1000 ГэВ/с 2 , то теперь можно надеяться достичь как минимум 1100 ГэВ/с 2 с тем же набором данных. Возможности машины возрастают – можно искать частицы чуть большей массы. А если в 2012 году вы наберёте в три раза больше данных, чем в 2011-м, вы получите большее число столкновений для каждого уровня энергии, и сможете увидеть признаки гипотетической частицы массой, допустим, 1200 ГэВ/с 2 .

Но это ещё не всё. Посмотрите на голубую и зелёную линии на рис. 4: они показывают, что происходят на энергиях порядка 1400 и 1600 ГэВ – таких, что соотносятся друг с другом, как 7 к 8. На уровне энергии столкновения протонов в 7 ТэВ количество мини-столкновений кварков с кварками, кварков с глюонами и т.п. с энергией 1400 ГэВ более чем в два раза превышает количество столкновений с энергией в 1600 ГэВ. Но когда машина увеличивает энергию на 8/7, то, что выполнялось для 1400, начинает выполняться для 1600. Иначе говоря, если вас интересуют мини-столкновения фиксированной энергии, их количество растёт – и гораздо больше, чем 14% роста энергии столкновения протонов! Это значит, что для любого процесса с предпочтительной энергией, допустим, появления легковесных частиц Хиггса, которое происходит на энергиях порядка 100-200 ГэВ, вы получаете больше результата за те же деньги. Рост с 7 до 8 ТэВ означает, что для того же количества столкновений протонов вы получаете больше частиц Хиггса. Производство частиц Хиггса увеличится примерно на 1,5. Количество верхних кварков и определённых типов гипотетических частиц увеличится чуть сильнее.

Это означает, что хотя в 2012 году количество столкновений протонов увеличено в 3 раза по сравнению с 2011-м, общее количество полученных частиц Хиггса увеличится почти в 4 раза просто из-за увеличения энергии.

Кстати, рис. 4 также доказывает, что протоны не состоят просто из двух верхних кварков и одного нижнего, как изображают на рисунках типа рис. 3. Если бы они были такими, тогда кварки должны были бы переносить порядка трети энергии протонов, и большая часть мини-столкновений проходила бы с энергиями порядка трети от энергии столкновения протонов: в районе 2300 ГэВ. Но на графике видно, что в районе 2300 ГэВ ничего особенного не происходит. С энергиями меньше 2300 ГэВ происходит гораздо больше столкновений, и чем ниже вы спускаетесь, тем больше столкновений видите. Всё оттого, что в протоне содержится огромное количество глюонов, кварков и антикварков, каждый из которых переносит малую часть энергии протона, но их так много, что они участвуют в огромном количестве мини-столкновений. Это свойство протона и показано на рис. 2 – хотя на самом деле количество низкоэнергетических глюонов и пар кварк-антикварк гораздо больше, чем изображено на рисунке.

Но вот чего график не показывает, так это доли, которые при мини-столкновениях с определённой энергией приходятся на столкновения кварков с кварками, кварков с глюонами, глюонов с глюонами, кварков с антикварками, и т.д. На самом деле, напрямую из экспериментов на БАК этого и нельзя сказать – джеты от кварков, антикварков и глюонов выглядят одинаково. Откуда нам известны эти доли – это история сложная, в неё входят множество различных прошлых экспериментов и комбинирующая их теория. И отсюда нам известно, что мини-столкновения самых высоких энергий обычно происходят у кварков с кварками и у кварков с глюонами. Столкновения на низких энергиях обычно происходят между глюонами. Столкновения кварков и антикварков происходят относительно редко, но они очень важны для определённых физических процессов.

Распределение частиц внутри протона


Рис. 5

Два графика, отличающихся масштабом вертикальной оси, показывают относительную вероятность столкновения с глюоном, верхним или нижним кварком, или антикварком, переносящим долю энергии протона, равную x. При малых x доминируют глюоны (а кварки и антикварки становятся равновероятными и многочисленными, хотя их всё равно меньше, чем глюонов), а при средних x доминируют кварки (хотя их становится крайне мало).

Оба графика демонстрируют одно и то же, просто с разным масштабом, поэтому то, что сложно увидеть на одном из них, проще рассмотреть на другом. А показывают они вот что: если в Большом адронном коллайдере на вас летит протонный луч, и вы ударяете по чему-либо внутри протона, насколько вероятно то, что вы ударите верхний кварк, или нижний кварк, или глюон, или верхний антикварк, или нижний антикварк, переносящий долю энергии протона, равную x? Из этих графиков можно вынести, что:

Из того, что все кривые очень быстро растут при малых x (видно на нижнем графике), следует, что большая часть частиц в протоне переносит менее 10% (x < 0,1) энергии протона, и вероятность столкнуться с частицей, переносящей мало энергии, гораздо больше вероятности столкнуться с частицей, переносящей много. При этом, 10% - не так уж и мало. В 2012 году лучи на БАК достигали энергий в 4 ТэВ, поэтому 10% означало 400 ГэВ. При этом для того, чтобы создать частицу хиггса энергией 124 ГэВ из двух глюонов требуется всего 62 ГэВ на глюон.
Из того, что жёлтая кривая (снизу) гораздо выше остальных, следует, что если вы столкнулись с чем-то, переносящим менее 10% энергии протона, то это, скорее всего, глюон; а опустившись ниже 2% энергии протона это с равной вероятностью будут кварки или антикварки.
Из того, что кривая глюона (вверху) опускается ниже кривых кварков при увеличении х, следует, что если вы столкнулись с чем-либо, переносящим более 20% (x > 0,2) энергии протона – что бывает очень, очень редко – это, скорее всего, кварк, при этом вероятность того, что это верхний кварк, в два раза больше вероятности, что это нижний кварк. Это остатки идеи, что «протон – это два верхних кварка и один нижний».
Все кривые с увеличением х резко падают; очень маловероятно, что вы столкнётесь с чем-либо, переносящим более 50% энергии протона.

Эти наблюдения непрямым образом отражаются на графике с рис. 4. Вот ещё пара неочевидных вещей по поводу двух графиков:
Большая часть энергии протона делится (примерно одинаково) между небольшим количеством высокоэнергетических кварков и огромным количеством низкоэнергетических глюонов.
Среди частиц по количеству преобладают низкоэнергетические глюоны, а за ними уже идут кварки и антикварки очень низких энергий.

Количество кварков и антикварков огромно, но: общее количество верхних кварков за вычетом общего количество верхних антикварков равно двум, а общее количество нижних кварков за вычетом общего количества нижних антикварков, равно одному. Как мы видели выше, лишние кварки переносят ощутимую (но не основную) часть энергии протона, летящего на вас. И только в этом смысле можно сказать, что протон в основном состоит из двух верхних кварков и одного нижнего.

Кстати, вся эта информация была получена из захватывающей комбинации экспериментов (в основном по рассеянию электронов или нейтрино с протонов или с атомных ядер тяжёлого водорода – дейтерия, содержащего один протон и один нейтрон), собранных вместе при помощи подробных уравнений, описывающих электромагнитные, сильные ядерные и слабые ядерные взаимодействия. Эта долгая история тянется с конца 1960-х и начала 1970-х. И она прекрасно работает для предсказания явлений, наблюдаемых в коллайдерах, где сталкиваются протоны с протонами и протоны с антипротонами – таких, как Тэватрон и БАК.

Другие доказательства сложной структуры протона

Давайте посмотрим на кое-какие данные, полученные на БАК, и то, как они подтверждают утверждения о строении протона (хотя текущее понимание протона появилось уже 3-4 десятилетия назад, благодаря множеству экспериментов).

График на рис. 4 получен из наблюдений за столкновениями, в процессе которых происходит что-то вроде изображённого на рис. 6: кварк или антикварк или глюон одного протона сталкиваются с кварком или антикварком или глюоном другого протона, рассеиваются с него (или происходит что-то более сложное – к примеру, два глюона сталкиваются и превращаются в кварк и антикварк), в результате чего две частицы (кварки, антикварки или глюоны) разлетаются от точки столкновения. Две этих частицы превращаются в джеты (струи адронов). Энергия и направление джетов наблюдаются в детекторах частиц, окружающих точку столкновения. Эта информация используется, чтобы понять, сколько энергии содержалось в столкновении двух изначальных кварков/глюонов/антикварков. Точнее говоря, инвариантная масса двух джетов, помноженная на c 2 , даёт энергию столкновения двух изначальных кварков/глюонов/антикварков.


Рис. 6

Количество столкновений такого типа в зависимости от энергии дано на рис. 4. То, что на низких энергиях количество столкновений гораздо больше, подтверждает тот факт, что большая часть частиц внутри протона переносит только малую долю его энергии. Данные начинаются с энергий в 750 ГэВ.


Рис. 7: данные для более низких энергий, взятые из меньшего набора данных. Dijet mass – то же, что m jj на рис. 4.

Данные для рис. 7 взяты из эксперимента CMS от 2010 года, на котором они строили график столкновений плоть до энергий в 220 ГэВ. Здесь построен график не количества столкновений, а немного сложнее: количества столкновений на ГэВ, то есть количество столкновений поделено на ширину столбца гистограммы. Видно, что тот же самый эффект продолжает работать на всём диапазоне данных. Столкновений типа тех, что изображены на рис. 6, при низких энергиях происходит гораздо больше, чем при высоких. И это количество продолжает расти до тех пор, пока уже невозможно становится различать джеты. В протоне содержится очень много низкоэнергетических частиц, и мало какие из них переносят ощутимую долю его энергии.

Что насчёт наличия в протоне антикварков? Три из самых интересных процессов, не похожих на столкновение, изображённое на рис. 6, иногда происходящие на БАК (в одном из нескольких миллионов столкновений протон-протон) включают процесс:

Кварк + антикварк -> W + , W - или Z-частица.

Они показаны на рис. 8.


Рис. 8

Соответствующие данные с CMS даны на рис. 9 и 10. Рис. 9 показывает, что количество столкновений, в результате которых появляется электрон или позитрон (слева) и нечто необнаружимое (вероятно, нейтрино или антинейтрино), или же мюон и антимюон (справа), предсказано правильно. Предсказание делается комбинированием Стандартной Модели (уравнений, предсказывающих поведение известных элементарных частиц) и структуры протона. Большие пики данных возникают из-за появления частиц W и Z. Теория прекрасно совпадает с данными.


Рис. 9: чёрные точки – данные, жёлтое – предсказания. Количество событий указано в тысячах. Слева: центральный пик появляется из-за нейтрино в частицах W. Справа комбинируются лептон и антилептон, появляющиеся в столкновении, и подразумевается масса частицы, из которой они появились. Пик появляется из-за получающихся частиц Z.

Ещё больше деталей можно видеть на рис. 10, где показано, что теория по количеству не только указанных, но и многих связанных с ними измерений – большинство из которых связаны со столкновениями кварков с антикварками – прекрасно совпадает с данными. Данные (красные точки) и теория (синие отрезки) никогда не совпадают точно из-за статистических флуктуаций, по той же причине, по которой вы, десять раз подбросив монету, не получите обязательно пять «орлов» и пять «решек». Поэтому точки-данные размещаются в пределах «полосы ошибки», вертикальной красной полоски. Размер полосы такой, что для 30% измерений полоса ошибки должна граничить с теорией, и всего для 5% измерений она должна отстоять от теории на две полосы. Видно, что все свидетельства подтверждают, что в протоне содержится множество антикварков. И мы правильно понимаем количество антикварков, переносящих определённую долю энергии протона.


Рис. 10

Дальше всё немного сложнее. Мы знаем даже, сколько у нас есть верхних и нижних кварков в зависимости от переносимой ими энергии, поскольку правильно предсказываем – с погрешностью менее 10% - насколько частиц W + получается больше, чем частиц W - (рис. 11).


Рис. 11

Соотношение верхних антикварков к нижним должно быть близко к 1, но верхних кварков должно быть больше, чем нижних, особенно при высоких энергиях. На рис. 6 можно видеть, что соотношение получающихся частиц W + и W - должно приблизительно давать нам соотношение верхних кварков и нижних кварков, участвующих в производстве частиц W. Но на рис. 11 видно, что измеренное отношение частиц W + к W - равно 3 к 2, а не 2 к 1. Это тоже показывает, что наивное представление о протоне, как о состоящем из двух верхних кварков и одного нижнего кварка слишком упрощено. Упрощённое соотношение 2 к 1 размывается, поскольку в протоне содержится множество пар кварк-антикварк, из которых верхних и нижних получается примерно поровну. Степень размытия определяется массой частицы W в 80 ГэВ. Если сделать её легче, размытия будет больше, а если тяжелее – меньше, поскольку большая часть пар кварк-антикварк в протоне переносит мало энергии.

Наконец, давайте подтвердим тот факт, что большая часть частиц в протоне – это глюоны.


Рис. 12

Для этого мы будем использовать тот факт, что верхние кварки можно создать двумя способами: кварк + антикварк -> верхний кварк + верхний антикварк, либо глюон + глюон -> верхний кварк + верхний антикварк (рис. 12). Мы знаем количество кварков и антикварков в зависимости от переносимой ими энергии на основе измерений, проиллюстрированных на рис. 9-11. Исходя из этого, можно использовать уравнения Стандартной Модели для предсказания того, сколько верхних кварков получится из столкновений только кварков и антикварков. Также мы считаем, на основании предыдущих данных, что в протоне глюонов больше, поэтому процесс глюон + глюон -> верхний кварк + верхний антикварк должен протекать не менее, чем в 5 раз чаще. Легко проверить, есть ли там глюоны; если их нет, данные должны лежать гораздо ниже теоретических предсказаний.
глюоны Добавить метки

Дам свой вариант ответа.

Протон, электрон и другие частицы - это очень-очень-оооочень маленькие частицы. Можно представлять их, например, как круглые пылинки (хотя это будет не совсем точно, но это лучше, чем вообще никак). Такие маленькие, что невозможно просто так рассмотреть одну такую пылинку. Всё вещество, всё что мы видим, всё что можем потрогать - совершенно всё состоит из этих частиц. Земля состоит из них, воздух из них, Солнце из них, человек из них.

Люди всегда хотели разобраться, как весь мир устроен. Из чего он состоит. Вот у нас есть горстка песка. Очевидно, что песок состоит из песчинок. А из чего состоит песчинка? Песчинка - это прочно слипшийся комочек, очень маленький камешек. Оказалось, что песчинку можно разделить на части. А если эти части ещё раз разделить на более мелкие части? А потом ещё раз? Можно ли, в конце-концов, найти что-такое, что уже нельзя будет разделить?

Люди, действительно, обнаружили, что в конечном счёте всё состоит из "пылинок", которые уже нельзя просто так разделить. Эти пылинки назвали "молекулами". Есть молекула воды, есть молекула кварца (кстати, песок, в основном, состоит из кварца), есть молекула соли (той, которую мы едим) и очень много разных других молекул.

Если же попытаться разделить, например, молекулу воды на части, то окажется, что составляющие части ведут себя уже совсем не как вода. Люди назвали эти части "атомами". Оказалось, что вода всегда разделяется на 3 атома. При этом 1 атом - это кислород, а другие 2 атома - это водород (их в воде 2 штуки). Если соединить любой атом кислорода с любыми 2 атомами водорода - опять будет вода.

При этом из кислорода и водорода можно кроме воды сделать и другие молекулы. Например, 2 атома кислорода легко соединяются друг с другом в такой "двойной кислород" (называется "молекула кислорода"). Такого кислорода очень много в нашем воздухе, мы им дышим, он нам нужен для жизни.

То есть оказалось, что у молекул есть "части", которые должны работать вместе, чтобы получился нужный результат. Это, например, как игрушечная машинка. У машинки, допустим, должна быть кабина и 4 колеса. Только когда они все вместе собраны - это машинка. Если же чего-то не хватает, то это уже не машинка. Если же вместо колёс поставить гусеницы - то будет вообще не машина, а танк (ну почти). Так и с молекулами. Чтобы была вода, она обязательно должна состоять из 1 кислорода и 2 водорода. Но по отдельности - это не вода.

Когда люди поняли, что все молекулы состоят из разного набора атомов, это людей обрадовало. Поизучав атомы, люди увидели, что в природе существует всего лишь около 100 разных атомов. То есть, люди узнали что-то новое о мире. Что всё-всё, что мы видим - это всего лишь 100 разных атомов. Но из-за того, что они соединены по разному, получается огромное разнообразие молекул (миллионы, миллиарды и даже больше разных молекул).

Можно ли взять и разделить какой-нибудь атом? Теми средствами, которые существовали в средневековье, разделить атом было невозможно. Поэтому какое-то время считалось, что атом разделить нельзя. Считалась, что "атомы" - это самые маленькие частицы, из которых состоит весь мир.

Однако, в итоге, атом разделить удалось. И обнаружилось (самое чудесное), что с атомами та же ситуация. Оказалось, что все 100 (их немного больше 100, на самом деле) разных атомов распадаются на всего лишь 3 разных вида частиц. Всего 3! Оказалось, что все атомы - это набор из "протонов", "нейтронов" и "электронов", которые соединены в атоме определённым образом. Разное количество этих частиц, будучи соединёнными вместе, дают разные атомы.

Есть чему радоваться: человечество докопалось до понимания, что всё-всё многообразие мира - это всего лишь 3 элементарные частицы.

А можно ли разделить какую-нибудь элементарную частицу? Например, можно ли разделить протон? Сейчас считается, что частицы (например, протон) тоже состоят из частей, которые назвали "кварки". Но, насколько я знаю, до сих пор ни разу не удалось отделить "кварк" от частицы, чтобы "посмотреть", что же это такое, когда оно находится отдельно, само по себе (а не в составе частицы). Похоже, что кварки не могут (или же очень не хотят) существовать иначе, кроме как внутри частицы.

Так что на данный момент протон, нейтрон и электрон - это самые маленькие части нашего мира, которые могут существовать отдельно, и из которых всё состоит. Это действительно, впечатляет.

Правда, радость длилась не очень долго. Потому что оказалось, что кроме протона, нейтрона и электрона существует множество других разновидностей частиц. Однако, в природе они почти никогда не встречаются. Не замечено, чтобы что-то большое в природе было построено из иных частиц, нежели чем протон, нейтрон и электрон. Но известно, что эти другие частицы можно получить искусственно, если несколько частиц разогнать до умопомрачительных скоростей (около миллиарда километров в час) и стукнуть ими по другим частицам.

Об устройстве атома.

Теперь можно немножко поговорить об атоме и его частицах (протонах, нейтронах, электронах).

Чем отличаются разные частицы? Протон и нейтрон - тяжёлые. А электрон - лёгкий. Конечно, поскольку все частицы очень маленькие - они все очень лёгкие. Но электрон, если не ошибаюсь, в тысячу раз легче, чем протон или нейтрон. А протон и нейтрон зато очень похожи по массе. Почти точь в точь (с чего бы? может быть, это не случайно?).

Протоны и нейтроны в атоме всегда соединяются вместе и образуют этакий "шарик", который называют "ядром". А вот электронов в ядре никогда не бывает. Вместо этого электроны вращаются вокруг ядра. Для наглядности часто говорят, что электроны вращаются вокруг ядра "как планеты вокруг Солнца". На самом деле, это не совсем так. Это примерно настолько же правда, насколько детский мультик похож на реальную жизнь. Вроде бы почти одинаково, но в реальности всё гораздо сложнее и непонятнее. В общем, 5-класснику полезно будет представить что электроны "летают вокруг ядра, как планеты вокруг Солнца". А потом где-нибудь в 7-9 классе можно будет прочитать про чудеса квантового микро-мира. Там ещё более чудесные чудеса, чем в Алисе в Стране Чудес. В том смысле, что там (на уровне атомов) всё происходит не так, как мы привыкли.

Также несколько электронов можно отделить от атома без очень уж больших усилий. Тогда получится атом без нескольких электронов. Эти электроны (их тогда называют "свободные электроны") будут летать сами по себе. Кстати, если взять много свободных электронов - получится электричество, с помощью которого в 21-м веке работает почти всё классное:).

Итак, протоны и нейтроны - тяжёлые. Электрон - лёгкий. Протоны и нейтроны - в ядре. Электроны - крутятся вокруг или же летают где-то сами по себе (обычно, немного полетав, они прицепляются к другим атомам).

А чем протон отличается от нейтрона? В целом они очень похожи, за исключением одной важной штуки. Протон имеет зяряд. А нейтрон - не имеет. Электрон, кстати, тоже имеет заряд, но другого типа...

А что такое "заряд"? Ну... Я думаю, что на этом вопросе нам лучше остановиться, потому что нужно же где-то остановиться.

Если ты захочешь узнать подробности, пиши, я отвечу. А пока что, я думаю, и этой информации на первый раз очень много.

Текста, в итоге, всё равно много и я не знаю, стоит ли уменьшать объём текста.

Причём, текст этот намного более научный. Тот, кто сумел осилить первую часть про элементарные частицы и не потерял интерес к физике, я надеюсь, сумеет осилить и этот текст.

Я разделю текст на множество частей, так его будет проще читать.

Ответить

Ещё 16 комментариев

Итак, про заряд.

В ходе внимательного изучения разных вариантов взаимодействия между разными предметами (включая и элементарные частицы) выяснилось, что всего существует 3 типа взаимодействия. Их назвали: 1) гравитационное, 2) электромагнитное и 3) ядерное.

Давайте для начала поговорим немного о гравитации. Люди много лет наблюдали в телескоп за движением планет и комет в Солнечной системе. Из этих наблюдений Ньютон (легендарный физик прошлых веков) сделал вывод, что все объекты в Солнечной системе притягивают друг-друга на расстоянии, и вывел знаменитый "закон всемирного тяготения".

Этот закон можно записать в таком виде: "Для любых 2 объектов можно посчитать силу их взаимного притяжения. Для этого нужно массу одного объекта умножить на массу другого объекта, затем получившийся результат нужно два раза поделить на расстояние между ними".

Можно записать этот закон в виде уравнения:

масса1 * масса2: расстояние: расстояние = сила

В этом уравнении значок * (значок звёздочки) обозначает умножение, значок: обозначает деление, "масса1" - это масса одного тела, "масса2" - масса второго тела, "расстояние" - это расстояние между этими двумя телами, "сила" - это сила, с которой они будут притягиваться друг к другу.

(Я предполагаю, что пятиклассники не знают, что такое "возведение в квадрат", поэтому я заменил квадрат расстояния на то, что будет понятно пятикласснику.)

Что интересного видно в этом уравнении? Например, то, что сила притяжения сильно зависит от расстояния между объектами. Чем больше расстояние - тем слабее сила. В этом легко убедиться. Например, посмотрим на такой пример: масса1 = 10, масса2 = 10, расстояние = 5. Тогда сила будет равна 10 * 10: 5: 5 = 100: 5: 5 = 20: 5 = 4. Если же при тех же массах расстояние = 10, то сила будет равна 10 * 10: 10: 10 = 1. Мы видим, что когда расстояние увеличилось (с 5 до 10), сила притяжения уменьшилась (с 4 до 1).

Ответить

Что такое "масса"?

Мы знаем, что всё в мире состоит из элементарных частиц (протонов, нейтронов и электронов). И эти элементарные частицы являются носителями массы. Электрон, правда, имеет совсем маленькую массу по сравнению с протоном и нейтроном, но масса у электрона всё равно есть. А вот у протона и нейтрона масса вполне заметная. Почему Земля имеет большую массу (600000000000000000000 килограмм), а я - маленькую (65 килограмм)? Ответ очень прост. Потому что Земля состоит из очень-очень большого количества протонов и нейтронов. Кстати, поэтому и незаметно, что я что-то к себе притягиваю - слишком маленькая масса. Но вообще-то я притягиваю. Только очень-очень-очень слабо.

Итак, люди обнаружили, что масса существует даже у элементарных частиц. И масса позволяет частицам притягивать друг-друга на расстоянии. Но что такое масса? Как она работает? Как нередко (и даже очень часто) бывает в науке, эта загадка до конца не разгадана. Пока что мы знаем только то, что масса находится "внутри частиц". И знаем, что масса остаётся неизменной до тех пор, пока сама частица остаётся неизменной. То есть, у всех протонов одинаковая масса. У всех нейтронов - одинаковая. И у всех электронов - одинаковая. При этом у протона и электрона они очень похожи (хотя и не точно-точно равны), а у электрона масса намного меньше. И не бывает такого, чтобы, например, нейтрон имел массу как у электрона или наоборот.

Ответить

Об электромагнитном взаимодействии.

И о зарядах. Наконец-то.

Внимательные наблюдения показали, что одного только закона всемирного тяготения недостаточно для объяснения некоторых взаимодействий. Должно быть что-то ещё. Вот взять даже обычный магнит (точнее 2 магнита). Во-первых, нетрудно заметить, что небольшой магнит массой, допустим, в 1 килограмм, притягивает другой магнит гораздо-гораздо сильнее, чем я. Если верить закону всемирного тяготения, то мои 65 килограмм должны притягивать магнит в 65 раз сильнее - но нет. Магнит совсем не хочет ко мне притягиваться. А вот к другому магниту - хочет. Как это объяснить?

Другой вопрос. Почему магнит притягивает к себе только некоторые предметы (например, железки, а также другие магниты), а остальные - не замечает?

И ещё. Почему магнит притягивает другой магнит только с определённой стороны? И, самое удивительное, что если подставить магнит противоположной стороной, то окажется, что 2 магнита вовсе не притягиваются, а наоборот - отталкиваются. При этом легко заметить, что они отталкиваются с той же силой, с какой они до этого притягивались.

Закон всемирного тяготения говорит только о притягивании, но ничего не знает об отталкивании. Значит, должно быть что-то ещё. Что-то, что в одних случаях предметы притягивает, а в других - отталкивает.

Вот эту силу назвали "электромагнитным взаимодействием". Для электромагнитного взаимодействия тоже есть свой закон (называется "закон Кулона", в честь Шарля Кулона, который открыл этот закон). Очень интересно то, что общий вид этого закона почти точно такой же, как и у закона всемирного тяготения, только вместо "масса1" и "масса2" там "заряд1" и "заряд2".

заряд1 * заряд2: расстояние: расстояние = сила

"заряд1" - это заряд первого объекта, "заряд2" - заряд второго объекта.

А что такое "заряд"? Говоря по правде, никто этого не знает. Также как никто точно не знает, что такое "масса".

Ответить

Загадочные заряды.

Пытаясь разобраться, люди дошли до элементарных частиц. И обнаружили, что у нейтрона есть только масса. То есть, нейтрон участвует в гравитационном взаимодействии. А в электромагнитном взаимодействии он не участвует. То есть, заряд нейтрона равен нулю. Если взять закон Кулона и подставить ноль вместо одного из зарядов, то сила будет тоже равна нулю (нет силы). Так и ведёт себя нейтрон. Нет электромагнитной силы.

У электрона масса очень слабая, поэтому в гравитационном взаимодействии он участвует очень мало. Зато электрон сильно отталкивает (отталкивает!) другие электроны. Это потому что у него есть заряд.

У протона есть и масса и заряд. И протон тоже отталкивает другие протоны. Если есть масса - значит, он притягивает к себе все частицы. Но одновременно с этим протон отталкивает другие протоны. Причём электромагнитная сила отталкивания гораздо сильнее, чем гравитационная сила притяжения. Поэтому отдельные протоны будут улетать друг от друга прочь.

Но это ещё не вся история. Электромагнитная сила может не только отталкивать, но и притягивать. Протон притягивает электрон, а электрон притягивает протон. При этом можно провести эксперимент и обнаружить, что сила притягивания между протоном и электроном равна силе отталкивания между двумя протонами и также равна силе отталкивания между двумя электронами.

Из этого мы можем сделать вывод, что заряд протона равен заряду электрона. Но по какой-то причине 2 протона друг-друга отталкивают, а протон и электрон - притягиваются. Как это может быть?

Ответить

Разгадка зарядов.

Разгадка, оказывается, в том, что масса-то у всех частиц всегда больше нуля. А вот заряд может быть и больше нуля (протон) и равен нулю (нейтрон) и меньше нуля (электрон). Хотя, по правде говоря, можно было бы назначить так, что, наоборот, у электрона заряд больше нуля, а у протона - меньше нуля. Это было неважно. Важно то, что у протона и у электрона заряды противоположны.

Давайте для примера измерять заряды в "протонах" (то есть, 1 протон имеет силу заряда, равную 1). И определим силу, взаимодействия между двумя протонами на каком-нибудь расстоянии (будем считать, что расстояние = 1). Подставляем числа в формулу и получаем 1 * 1: 1: 1 = 1. Теперь давайте измерим силу взаимодействия между электроном и протоном. Мы знаем, что заряд электрона равен заряду протона, но имеет противоположный знак. Раз у нас заряд протона равен 1, то заряд электрона должен быть равен -1. Подставляем. -1 * 1: 1: 1 = -1. Мы получили -1. Что означает знак "минус"? Он означает, что силу взаимодействия нужно изменить в противоположную сторону. То есть, сила отталкивания стала силой притягивания!

Ответить

Подводим итоги.

Между 3 наиболее распространёнными элементарными частицами существуют заметные различия.

Нейтрон имеет только массу, а заряда не имеет.

Протон имеет и массу и заряд. При этом заряд протона считается положительным.

Электрон имеет маленькую массу (примерно в 1000 раз меньше, чем у протона и нейтрона). Но имеет заряд. При этом заряд равен заряду протона, только с противоположным знаком (если считать, что у протона "плюс", значит у электрона - "минус").

При этом обычный атом ничего не притягивает и не отталкивает. Почему? Это уже просто. Представим какой-нибудь обычный атом (например, атом кислорода) и один свободный электрон, который летает рядом с атомом. Атом кислорода состоит из 8 протонов, 8 нейтронов и 8 электронов. Вопрос. Должен ли этот свободный электрон притягиваться к атому или же он должен отталкиваться? У нейтронов заряда нет, поэтому их мы пока проигнорируем. Электромагнитная сила между 8 протонами и 1 электроном равна 8 * (-1) : 1: 1 = -8. А электромагнитная сила между 8 электронами в атоме и 1 свободным электронам равна -8 * (-1) : 1: 1 = 8.

Получается, что сила действия 8 протонов на свободный электрон равна -8, а сила действия электронов равна +8. В сумме это получается 0. То есть, силы равны. Ничего не происходит. В итоге говорят, что атом "электрически нейтрален". То есть, он не притягивает и не отталкивает.

Конечно, остаётся ещё сила гравитации. Но у электрона масса очень мала, поэтому гравитационное взаимодействие с атомом очень мало.

Ответить

Заряженные атомы.

Мы помним, что приложив немного усилий, мы можем оторвать более далёкие от ядра электроны. В этом случае у атома кислорода будет, например, 8 протонов, 8 нейтронов и 6 электронов (2 мы оторвали). Атомы, в которых недостаёт (или, наоборот, слишком много) электронов, называются "ионы". Если мы сделаем 2 таких атома кислорода (убрав по 2 электрона из каждого атома), они будут друг-друга отталкивать. Подставим в закон Кулона: (8 - 6) * (8 - 6) : 1: 1 = 4. Мы видим, что получившееся число больше нуля, значит ионы будут отталкиваться.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Электроны двигаются вокруг ядра по круговым орбитам, подобно Земле, вращающейся вокруг Солнца. Электроны могут переходить между этими уровнями, и когда они это делают, они либо поглощают фотон, либо испускают фотон. Каков размер протона и что это такое?

Главный строительный элемент видимой Вселенной

Протон является основным строительным блоком видимой Вселенной, но многие его свойства, такие как радиус заряда и его аномальный магнитный момент, не совсем понятны. Что такое протон? Это субатомная частица с положительным электрическим зарядом. До недавнего времени протон считался наименьшей частицей. Однако благодаря новым технологиям стал известен тот факт, что протоны включают в себя еще более маленькие элементы, частицы, называемые кварками, истинными фундаментальными частицами материи. Протон может образовываться в результате неустойчивого нейтрона.

Заряд

Каким электрическим зарядом обладает протон? Он имеет заряд +1 элементарного заряда, который обозначается буквой "e" и был открыт в 1874 году Джорджем Стоуни. В то время как протон имеет положительный заряд (или 1e), электрон имеет отрицательный заряд (-1 или -e), а нейтрон вовсе не имеет заряда и может обозначаться 0e. 1 элементарный заряд равен 1,602 × 10 -19 кулонов. Кулон представляет собой тип единицы электрического заряда и является эквивалентом одному амперу, который неуклонно транспортируется в расчете на одну секунду.

Что такое протон?

Все, чего вы можете коснуться и чувствовать, состоит из атомов. Размер этих крошечных частиц внутри центра атома очень маленький. Хотя они составляют большую часть веса атома, но они все же очень малы. Фактически, если бы атом был размером с футбольное поле, каждый из его протонов был бы только размером с муравья. Протоны не должны ограничиваться ядрами атомов. Когда протоны находятся за пределами атомных ядер, они приобретают увлекательные, причудливые и потенциально опасные свойства, аналогичные свойствам нейтронов в подобных обстоятельствах.

Но протоны обладают дополнительным свойством. Поскольку они несут электрический заряд, их можно ускорить электрическими или магнитными полями. Высокоскоростные протоны и атомные ядра, содержащие их, выделяются в больших количествах во время солнечных вспышек. Частицы ускоряются магнитным полем Земли, вызывая ионосферные возмущения, известные как геомагнитные бури.

Число протонов, размер и масса

Количество протонов делает каждый атом уникальным. Например, у кислорода их восемь, у водорода всего один, а у золота - целых 79. Это число похоже на тождество элемента. Вы можете многое узнать об атоме, просто зная число его протонов. Эта найденная в ядре каждого атома, имеет положительный электрический заряд, равный и противоположный электрону элемента. Если бы он был изолирован, то имел бы массу всего около 1,673 -27 кг, чуть меньше массы нейтрона.

Число протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свое уникальное тождество. В атомах какого-либо конкретного элемента число протонов в ядрах всегда одно и то же. Атом простого водорода имеет ядро, которое состоит всего из 1 протона. Ядра всех других элементов почти всегда содержат нейтроны в дополнение к протонам.

Насколько велик протон?

Никто этого точно не знает, и это проблема. В экспериментах использовались модифицированные атомы водорода, чтобы получить размер протона. Это субатомная тайна с большими последствиями. Спустя шесть лет после того, как физики объявили о слишком малом измерении размера протона, ученые все еще не уверены касательно истинного размера. С появлением новых данных тайна становится все более глубокой.

Протоны - частицы, находящиеся внутри ядра атомов. В течение многих лет радиус протона казался закрепленным на отметке примерно в 0,877 фемтометров. Но в 2010 году Рэндольф Пол из из Института квантовой оптики им. Макса Планка в Гархинге, Германия, получил тревожный ответ, используя новую методику измерения.

Команда изменила один протон, один электронный состав атома водорода, переключив электрон на более тяжелую частицу, называемую мюоном. Затем они заменили этот измененный атом лазером. Измерение полученного изменения их энергетических уровней позволило им рассчитать размер его протонного ядра. К их удивлению, он вышел на 4 % меньше, чем традиционное значение, измеряемое другими средствами. В эксперименте Рэндольфа также применили новую методику к дейтерию - изотопу водорода, имеющему один протон и один нейтрон, все вместе известный как дейтрон, - в его ядре. Однако точное вычисление размера дейтрона занимало много времени.

Новые эксперименты

Новые данные показывают, что проблема радиуса протонов не исчезает. Еще несколько экспериментов в лаборатории Рэндольфа Пола и других уже ведутся. Кто-то прибегает к той же технике мюона для измерения размера более тяжелых атомных ядер, таких как гелий. Другие одновременно измеряют рассеяние мюонов и электронов. Пол подозревает, что виновником может быть не сам протон, а неправильное измерение константы Ридберга, число, которое описывает длины волн света, испускаемого возбужденным атомом. Но эта константа хорошо известна благодаря другим прецизионным экспериментам.

В другом объяснении предлагаются новые частицы, которые вызывают неожиданные взаимодействия между протоном и мюоном, не меняя его связи с электроном. Это может означать, что головоломка выводит нас за рамки стандартной модели физики частиц. «Если в какой-то момент в будущем кто-то обнаружит что-то помимо стандартной модели, это будет так», - говорит Пол, с первым небольшим расхождением, затем с другим и другим, медленно создавая более монументальный сдвиг. Какой истинный размер протона? Новые результаты бросают вызов базовой теории физики.

Рассчитав влияние радиуса протона на траектории пролета, исследователи смогли оценить радиус частицы протона, который составил 0,84184 фемтометра. Ранее этот показатель был на отметке от 0,8768 до 0,897 фемтометра. При рассмотрении таких крошечных количеств всегда существует вероятность ошибки. Однако после 12 лет кропотливых усилий члены команды уверены в точности своих измерений. Теория может нуждаться в некоторой доработке, но каким бы ни был ответ, физики еще долго будут почесывать головы, решая эту сложную задачу.