Теорема об изменении количества движения материальной точки. Теорема об изменении количества движения механической системы Теорема изменения количества движения материальной точки следствие

Дифференциальное уравнение движения материальной точки под действием силы F можно представить в следующей векторной форме:

Так как масса точки m принята постоянной, то её можно внести под знак производной. Тогда

Формула (1) выражает теорему об изменении количества движения точки в дифференциальной форме: первая производная по времени от количества движения точки равна действующей на точку силе .

В проекциях на координатные оси (1) можно представить в виде

Если обе части (1) умножить на dt , то получим другую форму этой же теоремы – теорему импульсов в дифференциальной форме:

т.е. дифференциал от количества движения точки равен элементарному импульсу силы, действующей на точку.

Проецируя обе части (2) на координатные оси, получаем

Интегрируя обе части (2) в пределах от нуля до t (рис. 1), имеем

где - скорость точки в момент t ; - скорость при t = 0;

S - импульс силы за время t .

Выражение в форме (3) часто называют теоремой импульсов в конечной (или интегральной) форме: изменение количества движения точки за какой-либо промежуток времени равно импульсу силы за тот же промежуток времени.

В проекциях на координатные оси эту теорему можно представить в следующем виде:

Для материальной точки теорема об изменении количества движения в любой из форм, по существу, не отличается от дифференциальных уравнений движения точки.

Теорема об изменении количества движения системы

Количеством движения системы будем называть векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы.

Рассмотрим систему, состоящую изn материальных точек. Составим для этой системы дифференциальные уравнения движения и сложим их почленно. Тогда получим:

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим:

Уравнение (4) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил.

Найдём другое выражение теоремы. Пусть в момент t = 0 количество движения системы равно Q 0 , а в момент времени t 1 становится равным Q 1 . Тогда, умножая обе части равенства (4) на dt и интегрируя, получим:

Или , где:

(S- импульс силы)

так как интегралы, стоящие справа, дают импульсы внешних сил,

уравнение (5) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.


В проекциях на оси координат будем иметь:

Закон сохранения количества движения

Из теоремы об изменении количества движения системы можно получить следующие важные следствия:

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (4) следует, что при этом Q =const.

Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по 10модулю и направлению.

2. 01Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Ох) равна нулю:

Тогда из уравнений (4`) следует, что при этом Q = const.

Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Рассмотрим некоторые примеры:

· Я в л е н и е о т д а ч и и л и о т к а т а. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщит винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

· Р а б о т а г р е б н о г о в и н т а (п р о п е л л е р а). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получают соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

· Р е а к т и в н о е д в и ж е н и е. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления будут силами внутренними и они не могут изменить суммарное количество движения системы ракета- пороховые газы. Но так как вырывающиеся газы имеют известное количество движения,направленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Теорема моментов относительно оси.

Рассмотрим материальную точку массы m , движущуюся под действием силы F . Найдем для неё зависимость между моментом векторов mV и F относительно какой-нибудь неподвижной оси Z.

m z (F) = xF - уF (7)

Аналогично для величины m (mV) , если вынести m за скобку будет

m z (mV) = m(хV - уV) (7`)

Беря от обеих частей этого равенства производные по времени, находим

В правой части полученного выражения первая скобка равна 0, так как dx/dt=V и dу /dt = V , вторая же скобка согласно формуле (7) равна

m z (F) , так как по основному закону динамики:

Окончательно будем иметь (8)

Полученное уравнение выражает теорему моментов относительно оси: производная по времени от момента количества движения точки относительно какой-нибудь оси равна моменту действующей силы относительно той же оси. Аналогичная теорема имеет место и для моментов относительно любого центра О.

Пусть материальная точка движется под действием силы F . Требуется определить движение этой точки по отношению к подвижной системе Oxyz (см. сложное движение материальной точки), которая движется известным образом по отношению к неподвижной системе O 1 x 1 y 1 z 1 .

Основное уравнение динамики в неподвижной системе

Запишем абсолютное ускорение точки по теореме Кориолиса

где a абс – абсолютное ускорение;

a отн – относительное ускорение;

a пер – переносное ускорение;

a кор – кориолисово ускорение.

Перепишем (25) с учетом (26)

Введем обозначения
- переносная сила инерции,
- кориолисова сила инерции. Тогда уравнение (27) приобретает вид

Основное уравнение динамики для изучения относительного движения (28) записывается как же как и для абсолютного движения, только к действующим на точку силам надо добавить переносную и кориолисову силы инерции.

Общие теоремы динамики материальной точки

При решении многих задач можно пользоваться выполненными заранее заготовками, полученными на основе второго закона Ньютона. Такие методы решения задач объединены в этом разделе.

Теорема об изменении количества движения материальной точки

Введем следующие динамические характеристики:

1. Количество движения материальной точки – векторная величина, равная произведению массы точки на вектор ее скорости


. (29)

2. Импульс силы

Элементарный импульс силы – векторная величина, равная произведению вектора силы на элементарный промежуток времени


(30).

Тогда полный импульс

. (31)

При F =const получим S =Ft .

Полный импульс за конечный промежуток времени можно вычислить только в двух случаях, когда действующая на точку сила постоянная или зависит то времени. В других случаях необходимо выразить силу как функцию времени.

Равенство размерностей импульса (29) и количества движения (30) позволяет установить между ними количественную взаимосвязь.

Рассмотрим движение материальной точки M под действием произвольной силы F по произвольной траектории.

ОУД:
. (32)

Разделяем в (32) переменные и интегрируем

. (33)

В итоге, принимая во внимание (31), получаем

. (34)

Уравнение (34) выражает следующую теорему.

Теорема : Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку, за тот же интервал времени.

При решении задач уравнение (34) необходимо спроектировать на оси координат

Данной теоремой удобно пользоваться, когда среди заданных и неизвестных величин присутствуют масса точки, ее начальная и конечная скорость, силы и время движения.

Теорема об изменении момента количества движения материальной точки

М
омент количества движения материальной точки
относительно центра равен произведению модуля количества движения точки на плечо, т.е. кратчайшее расстояние (перпендикуляр) от центра до линии, совпадающей с вектором скорости

, (36)

. (37)

Взаимосвязь между моментом силы (причиной) и моментом количества движения (следствием) устанавливает следующая теорема.

Пусть точка M заданной массы m движется под действием силы F .

,
,

, (38)

. (39)

Вычислим производную от (39)

. (40)

Объединяя (40) и (38), окончательно получим

. (41)

Уравнение (41) выражает следующую теорему.

Теорема : Производная по времени от вектора момента количества движения материальной точки относительно некоторого центра равна моменту действующей на точку силы относительно того же центра.

При решении задач уравнение (41) необходимо спроектировать на оси координат

В уравнениях (42) моменты количеств движения и силы вычисляются относительно координатных осей.

Из (41) вытекает закон сохранения момента количества движения (закон Кеплера).

Если момент силы, действующей на материальную точку, относительно какого-либо центра равен нулю, то момент количества движения точки относительно этого центра сохраняет свою величину и направление.

Если
, то
.

Теорема и закон сохранения используются в задачах на криволинейное движение, в особенности при действии центральных сил.

(Фрагменты математической симфонии)

Связь импульса силы с основным уравнением ньютоновской динамики выражает теорема об изменении количества движения материальной точки.

Теорема. Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы (), действующей на материальную точку за тот же промежуток времени. Математическое доказательство этой теоремы можно назвать фрагментом математической симфонии. Вот он.

Дифференциал количества движения материальной точки равен элементарному импульсу силы, действующей на материальную точку. Интегрируя выражение (128) дифференциала количества движения материальной точки, имеем

(129)

Теорема доказана и математики считают свою миссию законченной, а у инженеров, судьба которых - свято верить математикам, возникают вопросы при использовании доказанного уравнения (129). Но их прочно блокирует последовательность и красота математических действий (128 и 129), которые завораживают и побуждают назвать их фрагментом математической симфонии. Сколько поколений инженеров соглашались с математиками и трепетали перед таинственностью их математических символов! Но вот нашёлся инженер, несогласный с математиками, и задаёт им вопросы.

Уважаемые математики! Почему ни в одном из Ваших учебников по теоретической механике не рассматривается процесс применения Вашего симфонического результата (129) на практике, например, при описании процесса разгона автомобиля? Левая часть уравнения (129) предельно понятна. Автомобиль начинает разгон со скорости и завершает его, например, на скорости . Вполне естественно, что уравнение (129) становится таким

И сразу возникает первый вопрос: как же из уравнения (130) определить силу , под действием которой автомобиль разогнан до скорости 10м/с? Ответа на этот вопрос нет ни в одном из неисчислимых учебников по теоретической механике. Пойдём дальше. После разгона автомобиль начинает равномерное движение с достигнутой скоростью 10м/с. Какая же сила движет автомобиль????????? У меня ничего не остаётся, как краснеть вместе с математиками. Первый закон ньютоновской динамики утверждает, что при равномерном движении автомобиля на него не действуют никакие силы, а автомобиль, образно говоря, чихает на этот закон, расходует бензин и совершает работу, перемещаясь, например, на расстояние 100 км. А где же сила, совершившая работу по перемещению автомобиля на 100км? Симфоническое математическое уравнение (130) молчит, а жизнь продолжается и требует ответа. Начинаем искать его.

Поскольку автомобиль движется прямолинейно и равномерно, то сила, перемещающая его, постоянна по величине и направлению и уравнение (130) становится таким

(131)

Итак, уравнение (131) в данном случае описывает ускоренное движение тела. Чему же равна сила ? Как выразить её изменение с течением времени? Математики предпочитают обходить этот вопрос и оставляют его инженерам, полагая, что они должны искать ответ на этот вопрос. У инженеров остаётся одна возможность – учесть, что если после завершения ускоренного движения тела, наступает фаза равномерного движения, которое сопровождается под действием постоянной силы представить уравнение (131) для момента перехода от ускоренного к равномерному движению в таком виде

(132)

Стрелка в этом уравнении означает не результат интегрирования этого уравнения, а процесс перехода от его интегрального вида к упрощённому виду. Сила в этом уравнении эквивалентна усреднённой силе, изменившей количество движения тела от нуля до конечного значения . Итак, уважаемые, математики и физики-теоретики, отсутствие Вашей методики определения величины Вашего импульса вынуждает нас упрощать процедуру определения силы , а отсутствие методики определения времени действия этой силы вообще ставит нас в безвыходное положение и мы вынуждены использовать выражение для анализа процесса изменения количества движения тела. В результате получается, чем дольше будет действовать сила , тем больше её импульс . Это явно противоречит давно сложившимся представлениям о том, что импульс силы тем больше, чем меньше время его действия.

Обратим внимание на то, что изменение количества движения материальной точки (импульса силы) при ускоренном её движении происходит под действием ньютоновской силы и сил сопротивления движению, в виде сил, формируемых механическими сопротивлениями, и силой инерции. Но ньютоновская динамика в абсолютном большинстве задач игнорирует силу инерции, а Механодинамика утверждает, что изменение количества движения тела при его ускоренном движении происходит за счёт превышения величины ньютоновской силы над силами сопротивления движению, в том числе и над силой инерции.

При замедленном движении тела, например, автомобиля с выключенной передачей, ньютоновская сила отсутствует, и изменение количества движения автомобиля происходит за счёт превышения сил сопротивления движению над силой инерции, которая движет автомобиль при его замедленном движении .

Как же теперь вернуть результаты отмеченных «симфонических» математических действий (128) в русло причинно-следственных связей? Выход один – найти новое определение понятиям «импульс силы» и «ударная сила». Для этого разделим обе части уравнения (132) на время t. В результате будем иметь

. (133)

Обратим внимание на то, что выражение mV/t - скорость изменения количества движения (mV/t) материальной точки или тела. Если учесть, что V/t – ускорение, то mV/t - сила, изменяющая количество движения тела. Одинаковая размерность слева и с права знака равенства даёт нам право назвать силу F ударной силой и обозначить её символом , а импульс S - ударным импульсом и обозначить его символом . Из этого следует и новое определение ударной силы. Ударная сила , действующая на материальную точку или тело, равна отношению изменения количества движения материальной точки или тела ко времени этого изменения.

Обратим особое внимание на то, что в формировании ударного импульса (134) участвует только ньютоновская сила, которая изменила скорость автомобиля от нулевого значения до максимального - , поэтому уравнение (134) всецело принадлежит ньютоновской динамике. Поскольку величину скорости фиксировать экспериментально значительно легче, чем - ускорения, то формула (134) очень удобна для расчётов.

Из уравнения (134) следует такой необычный результат.

Обратим внимание на то, что согласно новым законам механодинамики генератором импульса силы при ускоренном движении материальной точки или тела является ньютоновская сила . Она формирует ускорение движения точки или тела, при котором автоматически возникает сила инерции, направленная противоположно ньютоновской силе и ударная ньютоновская сила должна преодолевать действие силы инерции, поэтому сила инерции должна быть представлена в балансе сил в левой части уравнения (134). Так как сила инерции равна массе точки или тела, умноженной на замедление , которое она формирует, то уравнение (134) становится таким

(136)

Уважаемые математики! Видите, какой вид приняла математическая модель, описывающая ударный импульс, который ускоряет движение ударяемого тела от нулевой скорости до максимальной V (11). Теперь проверим её работу в определении ударного импульса , который равен ударной силе , выстрелившей 2-й энергоблок СШГ (рис. 120), а Вам оставим Ваше бесполезное уравнение (132). Чтобы не усложнять изложение, мы оставим пока формулу (134) в покое и воспользуемся формулами, дающими усреднённые значения сил. Видите, в какое положение Вы ставите инженера, стремящегося решить конкретную задачу.

Начнём с динамики Ньютона. Эксперты установили, что 2-й энергоблок поднялся на высоту 14м. Поскольку он поднимался в поле силы тяжести, то на высоте h=14м его потенциальная энергия оказалась равной

а средняя кинетическая энергия была равна

Рис. 120. Фото машинного зала до катастрофы

Из равенства кинетической (138) и потенциальной (137) энергий следует средняя скорость подъёма энергоблока (рис. 121, 122)

Рис. 121. Фотон машинного зала после катастрофы

Согласно новым законам механодинамики подъём энергоблока состоял из двух фаз (рис. 123): первая фаза ОА - ускоренный подъём и вторая фаза АВ – замедленный подъём , , .

Время и расстояния их действия, примерно, равны (). Тогда кинематическое уравнение ускоренной фазы подъёма энергоблока запишется так

. (140)

Рис. 122. Вид колодца энергоблока и самого энергоблока после катастрофы

Закон изменения скорости подъёма энергоблока в первой фазе имеет вид

. (141)

Рис. 123. Закономерность изменения скорости V полёта энергоблока

Подставляя время из уравнения (140) в уравнение (141), имеем

. (142)

Время подъёма блока в первой фазе определится из формулы (140)

. (143)

Тогда общее время подъёма энергоблока на высоту 14м будет равно . Масса энергоблока и крышки равна 2580 тонн. Согласно динамике Ньютона сила , поднимавшая энергоблок, равна

Уважаемые математики! Следуем Вашим симфоническим математическим результатам и записываем Вашу формулу (129), следующую из динамики Ньютона, для определения ударного импульса, выстрелившего 2-й энергоблок

и задаём элементарный вопрос: как определить время действия ударного импульса, выстрелившего 2-й энергоблок????????????

Уважаемые!!! Вспомните, сколько мела исписали на учебных досках поколения Ваших коллег, заумно уча студентов, как определять ударный импульс и никто не пояснил, как определять время действия ударного импульса в каждом конкретном случае. Вы скажете время действия ударного импульса равно интервалу времени изменения скорости энергоблока от нуля до, будем считать, максимального значения 16,75 м/с (139). Оно в формуле (143) и равно 0,84 с. Соглашаемся пока с Вами и определяем усреднённую величину ударного импульса

Сразу возникает вопрос: а почему величина ударного импульса (146) меньше ньютоновской силы 50600тонн? Ответа, у Вас, уважаемые математики, нет . Пойдём дальше.

Согласно динамике Ньютона, главная сила, которая сопротивлялась подъёму энергоблока, - сила тяжести . Так как эта сила направлена против движения энергоблока, то она генерирует замедление, которое равно ускорению свободного падения . Тогда сила гравитации, действующая на летящий вверх энергоблок, равна

Других сил, препятствовавших действию ньютоновской силы 50600 тонн (144), динамика Ньютона не учитывает, а механодинамика утверждает, что подъёму энергоблока сопротивлялась и сила инерции, равная

Сразу возникает вопрос: как найти величину замедления движению энергоблока? Динамика Ньютона молчит, а механодинамика отвечает: в момент действия ньютоновской силы, поднимавшей энергоблок, ей сопротивлялись: сила тяжести и сила инерции, поэтому уравнение сил, действовавших на энергоблок в этот момент, записывается так .

Просмотр: эта статья прочитана 14066 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Количество движения

Количество движения материальной точки - векторная величина, равная произведению массы точки на вектор ее скорости.

Единицей измерения количества движения является (кг м/с).

Количество движения механической системы - векторная величина, равная геометрической сумме (главному вектору) количества движения механической системы равняется произведению массы всей системы на скорость ее центра масс.

Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (например, вращение тела вокруг неподвижной оси, проходящей через центр масс тела).

В случае сложного движения, количество движения системы не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).

Импульс силы

Импульс силы характеризует действие силы за некоторый промежуток времени.

Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов.

Теорема об изменении количества движения материальной точки

(в дифференциальной форм е ):

Производная по времени от количества движения материальной точки равна геометрической сумме действующих на точки сил.

(в интегральной форме ):

Изменение количества движения материальной точки за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за этот промежуток времени.

Теорема об изменении количества движения механической системы

(в дифференциальной форме ):

Производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

(в интегральной форме ):

Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов внешних сил, действующих на систему за этот промежуток времени.

Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.

Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.

Закон сохранения количества движения системы

  1. Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равна нулю, то проекция количества движения на эту ось является величиной постоянной.

Выводы :

  1. Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.
  2. Теорема об изменении количества движения механической системы не характеризует вращательное движение механической системы, а только поступательное.

Приведен пример: Определить количество движения диска определенной массы, если известна его угловая скорость и размер.

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов


Применение теоремы об изменении кинетического момента
Пример решения задачи на применение теоремы об изменении кинетического момента для определения угловой скорости тела, совершающего вращение вокруг неподвижной оси.

Количеством движения материальной точки называется векторная величина mV, равная произведению массы точки на вектор ее скорости. Вектор mV приложен к движущейся точке.

Количеством движения системы называют векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы:

Вектор Q является свободным вектором. В системе единиц СИ модуль количества движения измеряется в кг м/с или Н с.

Как правило, скорости всех точек системы различны (см., например, распределение скоростей точек катящегося колеса, показанное на рис. 6.21), и поэтому непосредственное суммирование векторов в правой части равенства (17.2) является затруднительным. Найдем формулу, с помощью которой величина Q вычисляется значительно легче. Из равенства (16.4) следует, что

Взяв от обеих частей производную по времени, получим Отсюда, учитывая равенство (17.2), находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Заметим, что вектор Q, подобно главному вектору сил в статике, является некоторой обобщенной векторной характеристикой движения всей механической системы. В общем случае движения системы ее количество движения Q можно рассматривать как характеристику поступательной части движения системы вместе с ее центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения системы будет равно нулю. Таково, например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Пример. Определить количество движения механической системы (рис. 17.1, а), состоящей из груза А массой т А - 2 кг, однородного блока В массой 1 кг и колеса D массой m D - 4 кг. Груз А движется со скоростью V A - 2 м/с, колесо D катится без скольжения, нить нерастяжима и невесома. Решение. Количество движения системы тел

Тело А движется поступательно и Q A =m A V A (численно Q A = 4 кг м/с, направление вектора Q A совпадает с направлением V A). Блок В совершает вращательное движение вокруг неподвижной оси, проходящей через его центр масс; следовательно, Q B - 0. Колесо D совершает плоскопараллельное


движение; его мгновенный центр скоростей находится в точке К , поэтому скорость его центра масс (точки Е) равна V E = V A /2= 1 м/с. Количество движения колеса Q D - m D V E - 4 кг м/с; вектор Q D направлен горизонтально влево.

Изобразив векторы Q A и Q D на рис. 17.1, б , находим количество движения Q системы по формуле (а). Учитывая направления и числовые значения величин, получим Q ~^Q A +Q E =4л/2~ кг м/с, направление вектора Q показано на рис. 17.1, б.

Учитывая, что a -dV/dt, уравнение (13.4) основного закона динамики можно представить в виде

Уравнение (17.4) выражает теорему об изменении количества движения точки в дифференциальной форме: в каждый момент времени производная по времени от количества движения точки равна действующей на точку силе. (По существу это другая формулировка основного закона динамики, близкая к той, которую дал Ньютон.) Если на точку действует несколько сил, то в правой части равенства (17.4) будет равнодействующая сил, приложенных к материальной точке.

Если обе части равенства умножить на dt, то получим

Векторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времени dt эту величину обозначают dS и называют элементарным импульсом силы, т. е.

Импульс S силы F за конечный промежуток времени /, - / 0 определяется как предел интегральной суммы соответствующих элементарных импульсов, т. е.


В частном случае, если сила F постоянна по модулю и по направлению, то S = F(t | -/ 0) и S- F(t l - / 0). В общем случае модуль импульса силы может быть вычислен по его проекциям на координатные оси:


Теперь, интегрируя обе части равенства (17.5) при т = const, получим

Уравнение (17.9) выражает теорему об изменении количества движения точки в конечной (интегральной) форме: изменение количества движения точки за некоторый промежуток времени равно импульсу действующей на точку силы (или импульсу равнодействующей всех приложенных к ней сил) за тот же промежуток времени.

При решении задач пользуются уравнениями этой теоремы в проекциях на координатные оси


Теперь рассмотрим механическую систему, состоящую из п материальных точек. Тогда для каждой точки можно применить теорему об изменении количества движения в форме (17.4), учитывая приложенные к точкам внешние и внутренние силы:

Суммируя эти равенства и учитывая, что сумма производных равна производной от суммы, получаем

Так как по свойству внутренних сил HF k =0 и по определению количества движения ^fn k V/ c = Q , то окончательно находим


Уравнение (17.11) выражает теорему об изменении количества движения системы в дифференциальной форме: в каждый момент времени производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.11) на координатные оси, получим

Умножая обе части (17.11) на dt и интегрируя, получим

где 0, Q 0 - количества движения системы в моменты времени соответственно и / 0 .

Уравнение (17.13) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему за то же время.

В проекциях на координатные оси получим

Из теоремы об изменении количества движения системы можно получить следующие важные следствия, которые выражают закон сохранения количества движения системы.

  • 1. Если геометрическая ^умма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.11) следует, что при этом Q = const, т. е. вектор количества движения системы будет постоянен по модулю и направлению.
  • 2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-либо ось равна нулю (например, I e kx = 0), то из уравнений (17.12) следует, что при этом Q x = const, т. е. проекция количества движения системы на эту ось остается неизменной.

Отметим, что внутренние силы системы не участвуют в уравнении теоремы об изменении количества движения системы. Эти силы, хотя и влияют на количество движения отдельных точек системы, не могут изменить количество движения системы в целом. Учитывая это обстоятельство, при решении задач рассматриваемую систему целесообразно выбирать так, чтобы неизвестные силы (все или их часть) сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению скорости одной части системы надо определить скорость другой ее части.

Задача 17.1. К тележке массой т х - 12 кг, движущейся по гладкой горизонтальной плоскости, в точке А с помощью цилиндрического шарнира прикреплен невесомый стержень AD длиной /= 0,6 м с грузом D массой т 2 - 6 кг на конце (рис. 17.2). В момент времени / 0 = 0, когда скорость тележки и {) - 0,5 м/с, стержень AD начинает вращаться вокруг оси А, перпендикулярной плоскости чертежа, по закону ф = (тг/6)(3^ 2 - 1) рад (/-в секундах). Определить: u=f.

§ 17.3. Теорема о движении центра масс

Теорему об изменении количества движения механической системы можно выразить еще в другой форме, носящей название теоремы о движении центра масс.

Подставив в уравнение (17.11) равенство Q =MV C , получим

Если масса М системы постоянна, то получим

где а с - ускорение центра масс системы.

Уравнение (17.15) и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.15) на координатные оси, получим

где x c , y c , z c - координаты центра масс системы.

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Обсудим полученные результаты. Предварительно напомним, что центр масс системы является геометрической точкой, расположенной подчас вне геометрических границ тела. Действующие же на механическую систему силы (внешние и внутренние) приложены ко всем материальным точкам системы. Уравнения (17.15) дают возможность определить движение центра масс системы, не определяя движения отдельных ее точек. Сопоставив уравнения (17.15) теоремы о движении центра масс и уравнения (13.5) второго закона Ньютона для материальной точки, приходим к заключению: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы, и как будто бы к этой точке приложены все внешние силы, действующие на систему. Таким образом, решения, которые получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела.

В частности, если тело движется поступательно, то кинематические характеристики всех точек тела и его центра масс одинаковы. Поэтому поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.

Как видно из (17.15), внутренние силы, действующие на точки системы, не оказывают влияния на движение центра масс системы. Внутренние силы могут оказать влияние на движение центра масс в тех случаях, когда под их воздействием меняются внешние силы. Примеры этого будут приведены далее.

Из теоремы о движении центра масс можно получить следующие важные следствия, которые выражают закон сохранения движения центра масс системы.

1. Если геометрическая сумма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.15) следует,

что при этом а с = 0 или V c = const, т. е. центр масс этой системы

движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое (V c =0), то он и останется в покое; откуда

следует, что его положение в пространстве не изменится, т. е. r c = const.

2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю (?F e kx = 0), то из уравнения (17.16) следует, что при этом х с =0 или V Cx =х с = const, т. е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент Vex = 0, то и в любой последующий момент времени это значение сохранится, а отсюда следует, что координата х с центра масс системы не изменится, т. е. х с - const.

Рассмотрим примеры, иллюстрирующие закон движения центра масс.

Примеры. 1. Как было отмечено, движение центра масс зависит только от внешних сил, внутренними силами изменить положение центра масс нельзя. Но внутренние силы системы могут вызвать внешние воздействия. Так, движение человека по горизонтальной поверхности происходит под действием сил трения между подошвами его обуви и поверхностью дороги. Силой своих мышц (внутренние силы) человек ногами отталкивается от поверхности дороги, отчего в точках контакта с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения.

  • 2. Аналогичным образом двигается автомобиль. Внутренние силы давления в его двигателе заставляют вращаться колеса, но так как последние имеют сцепление с дорогой, то возникающие силы трения «толкают» машину вперед (в результате колеса не вращаются, а двигаются плоскопараллельно). Если же дорога будет абсолютно гладкой, то центр масс автомобиля будет неподвижен (при нулевой начальной скорости) и колеса при отсутствии трения будут пробуксовывать, т. е. совершать вращательное движение.
  • 3. Движение с помощью гребного винта, пропеллера, весел происходит за счет отбрасывания некоторой массы воздуха (или воды). Если рассматривать отбрасываемую массу и движущееся тело как одну систему, то силы взаимодействия между ними, как внутренние, не могут изменить суммарное количество движения этой системы. Однако каждая из частей этой системы будет двигаться, например, лодка вперед, а вода, которую отбрасывают весла, - назад.
  • 4. В безвоздушном пространстве при движении ракеты «отбрасываемую массу» следует «брать с собой»: реактивный двигатель сообщает движение ракете за счет отброса назад продуктов горения топлива, которым заправлена ракета.
  • 5. При спуске на парашюте можно управлять движением центра масс системы человек - парашют. Если мышечными усилиями человек подтягивает стропы парашюта так, что меняется форма его купола либо угол атаки воздушного потока, то это вызовет изменение и внешнего воздействия воздушного потока, а тем самым оказывается влияние на движение всей системы.

Задача 17.2. В задаче 17.1 (см. рис. 17.2) определить: 1) закон движения тележки х { = /)(/), если известно, что в начальный момент времени t 0 = О система находилась в покое и координата х 10 = 0; 2) ^акон изменения со временем суммарного значения нормальной реакции N(N = N" + N") горизонтальной плоскости, т. е. N=f 2 (t).

Решение. Здесь, как и в задаче 17.1, рассмотрим систему, состоящую из тележки и груза D, в произвольном положении под действием приложенных к ней внешних сил (см. рис. 17.2). Координатные оси Оху проведем так, чтобы ось х была горизонтальна, а ось у проходила через точку А 0 , т. е. место расположения точки А в момент времени t-t 0 - 0.

1. Определение закона движения тележки. Для определения х, = /,(0 воспользуемся теоремой о движении центра масс системы. Составим дифференциальное уравнение его движения в проекции на ось х:

Так как все внешние силы вертикальны, то T,F e kx = 0, и, следовательно,

Проинтегрировав это уравнение, найдем, что Мх с = В, т. е. проекция скорости центра масс системы на ось х есть величина постоянная. Так как в начальный момент времени

Интегрируя уравнение Мх с = 0, получим

т. е. координата х с центра масс системы постоянна.

Запишем выражение Мх с для произвольного положения системы (см. рис. 17.2), приняв во внимание, что х А - х { , x D - х 2 и х 2 - х { - I sin ф. В соответствии с формулой (16.5), определяющей координату центра масс системы, в данном случае Мх с - т { х { + т 2 х 2 ".

для произвольного момента времени

для момента времени / () = 0, х { = 0 и

В соответствии с равенством (б) координата х с центра масс всей системы остается неизменной, т. е. хД^,) = x c (t). Следовательно, приравняв выражения (в) и (г), получим зависимость координаты х, от времени.

О т в е т: Х - 0,2 м, где t - в секундах.

2. Определение реакции N. Для определения N=f 2 (t ) составим дифференциальное уравнение движения центра масс системы в проекции на вертикальную ось у (см. рис. 17.2):

Отсюда, обозначив N= N + N", получим

По формуле, определяющей ординату у с центра масс системы, Му с = т { у х + т 2 у 2 , где у, = у С1 , у 2 = y D = У а ~ 1 cos Ф» получим

Продифференцировав это равенство два раза по времени (учитывая при этом, что у С1 и у А величины постоянные и, следовательно, их производные равны нулю), найдем


Подставив это выражение в уравнение (е), определим искомую зависимость N от t.

Ответ: N- 176,4 + 1,13,

где ф = (я/6)(3/ -1), t - в секундах, N- в ньютонах.

Задача 17.3. Электрический мотор массой т х прикреплен на горизонтальной поверхности фундамента болтами (рис. 17.3). На валу мотора под прямым углом к оси вращения закреплен одним концом невесомый стержень длиной /, на другом конце стержня насажен точечный груз А массой т 2 . Вал вращается равномерно с угловой скоростью со. Найти горизонтальное давление мотора на болты. Решение. Рассмотрим механическую систему, состоящую из мотора и точечного груза А, в произвольном положении. Изобразим действующие на систему внешние силы: силы тяжести Р х, Р 2 , реакцию фундамента в виде вертикальной силы N и горизонтальной силы R. Проведем координатную ось х горизонтально.

Чтобы определить горизонтальное давление мотора на болты (а оно будет численно равно реакции R и направлено противоположно вектору R ), составим уравнение теоремы об изменении количества движения системы в проекции на горизонтальную ось х:

Для рассматриваемой системы в ее произвольном положении, учитывая, что количество движения корпуса мотора равно нулю, получим Q x = - т 2 У А сощ. Принимая во внимание, что V A = a з/, ф = со/ (вращение мотора равномерное), получим Q x - - m 2 co/cos со/. Дифференцируя Q x по времени и подставляя в равенство (а), найдем R- m 2 co 2 /sin со/.

Заметим, что именно такие силы являются вынуждающими (см. § 14.3), при их воздействии возникают вынужденные колебания конструкций.

Упражнения для самостоятельной работы

  • 1. Что называют количеством движения точки и механической системы?
  • 2. Как изменяется количество движения точки, равномерно движущейся по окружности?
  • 3. Что характеризует импульс силы?
  • 4. Влияют ли внутренние силы системы на ее количество движения? На движение ее центра масс?
  • 5. Как влияют на движение центра масс системы приложенные к ней пары сил?
  • 6. При каких условиях центр масс системы находится в покое? движется равномерно и прямолинейно?

7. В неподвижной лодке при отсутствии течения воды на корме сидит взрослый человек, а на носу лодки - ребенок. В каком направлении переместится лодка, если они поменяются местами?

В каком случае модуль перемещения лодки будет большим: 1) если ребенок перейдет к взрослому на корму; 2) если взрослый перейдет к ребенку на нос лодки? Каковы будут при этих движениях перемещения центра масс системы «лодка и два человека»?