Понятия, законы и принципы классической физики. Почему законы квантовой и классической физики различаются? Законы классической физики описывают

Введение

1.Законы Ньютона

1.1. Зако́н ине́рции (Первый закон Нью́тона)

1.2 Закон движения

1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения)

1.4. Силы инерции

1.5. Закон вязкости

2.1. Законы термодинамики


    1. Закон Всемирного тяготения

3.2. Гравитационное взаимодействие

3.3. Небесная механика


    1. Сильные гравитационные поля

3.5. Современные классические теории гравитации

Заключение

Литература

Введение

Фундаментальные законы физики описывают важнейшие явления в природе и Вселенной. Они позволяют объяснить и даже предсказать многие явления. Так, опираясь только на фундаментальные законы классической физики (законы Ньютона, законы термодинамики и т.д.) человечество успешно осваивает космос, отправляет космические аппараты на другие планеты.

Я хочу рассмотреть в данной работе наиболее важные законы физики и их взаимосвязь. Наиболее важными законами классической механики являются законы Ньютона, которых достаточно, чтобы описать явления в макромире (без учёта высоких значений скорости или массы, что изучается в ОТО – Общей теории Относительности, или СТО – специальной теории относительности.)


  1. Законы Ньютона

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”.

1.1. Зако ́ н ине ́ рции (Первый закон Нью ́ тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО).

Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида.

В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида

Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных.

Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.

Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии.

Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Ек1+Еп1=Ек2+Еп2

Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт.

Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени.

1.3. Зако ́ н сохране ́ ния и ́ мпульса (Зако ́ н сохране ́ ния коли ́ чества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика).

Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства

Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: .

1.4. Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.

1.5. Закон вязкости

Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве

(скорость деформации) для текучих тел (жидкостей и газов):

где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды).

Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

где - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

2.1. Законы термодинамики

Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

* 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + d"U, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты и элементарная работа, совершенная над системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия. С точки зрения квантовых представлений этот закон можно интерпретировать следующим образом: dU есть изменение энергии данной квантовой системы, δA есть изменение энергии системы, обусловленное изменением заселённости энергетических уровней системы, а δQ есть изменение энергии квантовой системы, обусловленное изменением структуры энергетических уровней.

* 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 - Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

* 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю

3.1. Закон всемирного тяготения

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - “тяжесть”) - дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение. Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики, изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике, описывающей гравитацию, является общая теория относительности, квантовая теория гравитационного взаимодействия пока не построена.

3.2. Гравитационное взаимодействие

Гравитационное взаимодействие - одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, есть

Здесь G - гравитационная постоянная, равная м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты - планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля. Гравитация - слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел ноль, так как вещество в целом электрически нейтрально. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. В античные времена Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так - если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

3.3. Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе, эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений, и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений - нетривиальная структурa колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

3.4. Сильные гравитационные поля

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности:

Отклонение закона тяготения от ньютоновского;

Запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений; появление гравитационных волн;

Эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;

Изменение геометрии пространства-времени;

Возникновение черных дыр;

3.5. Современные классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временну́ю компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности - инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе “О динамике электрона”, приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе - к закону всемирного тяготения. Первая масса - инертная (или инерционная) - есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса - гравитационная (или, как её иногда называют, тяжёлая) - определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10−3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10−9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10−12-10−13 (Брагинский, Дикке и т. д.).

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет “расстояние” между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Заключение

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

В то же время, Законы Ньютона - не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным), и из этого можно вывести все законы Ньютона. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима…

Решение уравнений движения

Уравнение F = ma (то есть второй закон Ньютона) является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости. Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Изучение Фундаментальных законов физики подтверждает, что наука поступательно развивается: каждый этап, каждый открытый закон является этапом в развитии, но не даёт окончательных ответов на все вопросы.

Литература:


  1. Большая Советская Энциклопедия (Ньютона Законы механики и др. статьи), 1977, “Советская Энциклопедия”

  2. Онлайн-энциклопедия www.wikipedia.com
3. Библиотека ” Детлаф А.А., Яворский Б.М., Милковская Л.Б. - Курс физики (том 1). Механика. Основы молекулярной физики и термодинамики

Федеральное агентство по образованию

ГОУ ВПО Рыбинская государственная авиационная академия им. П.А.Соловьёва

Кафедра “Общей и технической физики”

РЕФЕРАТ

По дисциплине “Концепции современного естествознания”

Тема: “Фундаментальные законы физики”

Группа ЗКС-07

Студент Балшин А.Н.

Преподаватель: Василюк О.В.


Классическая физика понимается как фундаментальная база исследования макрообъектов. Для иллюстрации этого положения рассмотрим следующий пример. Как движется автомобиль? Поступательное движение поршней в цилиндрах преобразуется во вращательное движение колес. Колеса отталкиваются от поверхности дороги, и в результате автомобиль перемещается в пространстве по отношению к окружающим предметам. Все эти процессы изучает «Механика». Началом «цепочки» механических движений является движение поршня, который толкает газообразная смесь в камере сгорания. Процессы в газах изучает «Молекулярная физика». Часть энергии рабочей смеси преобразуется в энергию поршня, а часть «выбрасывается» в виде теплоты вместе с отработанными газами, расходуется на последующее сжатие рабочей смеси и т.д. Эти энергетические процессы, от которых зависят КПД и мощность двигателя, изучает «Термодинамика». Электромагнитные процессы в системе зажигания изучает «Электродинамика». Поскольку эти процессы формируются с помощью транзисторов микросхем и других устройств, которые основаны на квантовых явлениях, то они изучаются «Квантовой физикой».

Таким образом, движение автомобиля представляет собой сумму самых разных явлений. Различные специальные дисциплины изучают отдельные явления, агрегаты и узлы автомобиля. Это связано с их сложностью и привело к дифференциации науки. Однако самое первое описание движения автомобиля связано с основными законами классической физики.

Самый простой вид движения материи в макромире – это перемещение тел по отношению к другим телам. Для его описания используются основные понятия кинематики: движение, скорость, ускорение, относительность движения, система отсчета, материальная точка, траектория и т.п. и основные законы, объясняющие механическое движение, - законы Ньютона:

Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не понуждается приложенными силами изменить это состояние. (Закон инерции).

Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует (второй закон – главный закон динамики).

Действие всегда есть равное и противоположно направленное противодействие, т.е. взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны (третий закон).

Согласно законам механики – основной причиной движения является действие сил. Поэтому анализу понятия силы в классической физике уделяется большое внимание. Силы делятся на: силу упругости (она связана с деформацией тел) и силу трения. Природа этих сил связана с электрическим взаимодействием между атомами; силу тяготения (ее называют силой тяжести, под ее действием свободные тела падают на Землю). Сила тяготения часто проявляется в виде веса – силы, с которой тело действует на опору; силу инерции.

Существуют разные формы движения материи (механическая, тепловая, электрическая и т.д.), которые могут переходить друг в друга. Поэтому физика использует важнейшее понятие, выражающее меру перехода одних форм движения в другие, - это энергия. Важнейшие законы классической физики – законы сохранения:

Закон сохранения энергии: энергия не уничтожается и не создается, а может лишь переходить из одной формы в другую.

Закон сохранения импульса: если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

В современной физике эти важнейшие законы сохраняют свое фундаментальное значение, они выполняются всегда и везде, не только в макромире, но и в космосе и в микромире.

Несмотря на то, что классическая термодинамика была составной частью классической физики, однонаправленность тепловых процессов принципиально отличала их от механических. Любое механическое движение обратимо, т.е. может происходить как в прямом, так и в обратном направлении через те же промежуточные состояния: вращение маховика, качание маятника и т.п. При этом в уравнениях движения меняется лишь знак времени: вместо

t следует использовать –t. Это означает, что механическое движение симметрично по отношению к изменению знака времени. Тепловые процессы в этом смысле существенно отличаются: они необратимы, не симметричны по отношению к изменению знака времени. Время всегда течет в одну сторону, так называемая «стрела времени».

Все реальные процессы протекают с увеличением энтропии, т.е. ведут к установлению теплового равновесия. Из этого следует, что всякая упорядоченность в окружающем мире постепенно исчезает, плотности частиц и температуры выравниваются, энергия рассеивается, со временем прекращается вообще всякое направленное движение, всякая жизнь, останется только молекулярный хаос. Долгое время умы не только физиков, но и философов занимала идея тепловой смерти Вселенной.

Сосуществовавшие концепции описания природы – корпускулярная и континуальная – взаимоисключали друг друга, так как считалось, что они относятся к разным сферам реальности. Поэтому обнаружение двойственной природы у одних и тех же объектов означало для классической физики потрясение всех ее основ и получило название «кризиса физики».

Основные понятия темы:

Корпускулярная концепция природы описывает все явления и процессы природы как движение частиц.

Континуальная концепция природы описывает все явления и процессы как

Вещество – вид материи, обладающий корпускулярными свойствами.

Поле – вид материи, который представляет собой взаимодействие частиц и описывается длиной волны, фазой и амплитудой.

Динамические закономерности отображают объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Статистические закономерности отображают объективную закономерность в форме результата взаимодействия большого числа элементов и поэтому характеризуют их поведение в целом.

Закрытые (замкнутые) системы – системы, которые не обмениваются со своим окружением ни массой, ни энергией.

Энтропия – мера беспорядка в системе.

I-е начало термодинамики – закон сохранения энергии.

II-е начало термодинамики – энтропия замкнутой системы постоянно возрастает.

«Тепловая смерть Вселенной» - направленность всех процессов во Вселенной к точке термодинамического равновесия.



Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия "философия". Ведь обе науки имели единую цель - правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют - сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света.
  3. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  4. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  5. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.

Не оставайтесь равнодушными - развивайтесь!

Известно, что в конце 19 века было объявлено, что законы классической физики успешно работают только в макромире, а в микромире работают другие – квантовые законы. Эта точка зрения была господствующей в течение всего ХХ века. И вот теперь, когда мы на базе законов классической физики выявили модели фотона, электрона, протона, нейтрона и принципы формирования ядер, атомов и молекул, то возникает вопрос: а не ошиблись ли физики прошлых поколений, похоронив возможности классической физики решать задачи микромира? Чтобы ответить на этот вопрос, давайте внимательно проанализируем истоки недоверия к классической физике при поиске приемлемого варианта интерпретации экспериментальной информации об излучении абсолютно черного тела (рис. 119).

Все началось с установления закона излучения абсолютно черного тела (рис. 119). Вывод математической модели этого закона, выполненный Максом Планком в начале ХХ века, базировался на понятиях и представлениях, которые, как считалось, противоречат законам классической физики.

Рис. 119. а) графическая модель абсолютно черного тела;

b) – зависимость плотности излучения абсолютно чёрного тела от длины волны, излучаемых фотонов

Планк ввел в математическую модель закона излучения абсолютно черного тела константу с размерностью механического действия, что явно противоречило представлениям о волновой природе электромагнитного излучения. Тем не менее, его математическая модель достаточно точно описывала экспериментальные зависимости этого излучения. Введенная им константа указывала на то, что излучение идет не непрерывно, а порциями. Это противоречило закону излучения Релея - Джинса, который базировался на представлениях о волновой природе электромагнитного излучения, но описывал экспериментальные зависимости лишь в диапазоне низких частот (236), то есть больших длин волн излучения (рис. 119).

Прежде всего, приведем формулу Релея - Джинса, которая удовлетворительно описывает экспериментальную закономерность низкочастотного диапазона излучения (рис. 119). Основываясь на волновых представлениях об электромагнитном излучении, они установили, что энергия , заключенная в объёме абсолютно черного тела, определяется зависимостью

, (236)

где - частота излучения; - объём полости абсолютно черного тела (рис. 119); - скорость света; - постоянная Больцмана; - абсолютная температура излучения.

Разделив левую и правую части соотношения (236) на объём , получим объёмную плотность электромагнитного излучения

. (237)

Вывод этой формулы базируется на представлении о существовании в замкнутой полости абсолютно черного тела (рис. 119, b) целого числа стоячих волн электромагнитного излучения с частотой .

Чтобы получить математическую модель, которая описывала бы весь спектр электромагнитного излучения абсолютно черного тела, Макс Планк постулировал, что излучение идет не непрерывно, а порциями так, что энергия каждой излученной порции оказывается равной , и формула для расчета плотности электромагнитного излучения абсолютно черного тела оказалась такой (рис. 119)

. (238)

Величина - константа с механической размерностью действия. Причем смысл этого действия в то время был совершенно неясен. Тем не менее, математическая модель (238), полученная Планком, достаточно точно описывала экспериментальные закономерности излучения абсолютно черного тела (рис. 119).

Как видно, выражение в формуле (238) играет роль некоторого существенного дополнения к формуле (237) Релея - Джинса, суть которого сводится к тому, что - энергия одного излученного фотона.

Поскольку в математической модели закона излучения абсолютно черного тела (238) присутствует математическая модель закона излучения Релея - Джинса (236), то получается, что планковский закон излучения абсолютно черного тела базируется на исключающих друг друга волновых и корпускулярных представлениях о природе излучения.

Несовместимость непрерывного волнового процесса излучения с парциальным процессом явилась веским основанием для признания кризиса классической физики. С этого момента физики начали полагать, что сфера действия законов классической физики ограничена макромиром. В микромире, считают они, работают другие, квантовые законы, поэтому физика, описывающая микромир, должна называться квантовой физикой. Следует отметить, что Макс Планк пытался разобраться со смесью таких физических представлений и вернуть их на классический путь развития, но ему не удалось решить эту задачу.

Спустя почти сто лет нам приходится констатировать, что граница между законами классической и квантовой физики до сих пор не установлена. По-прежнему испытываются значительные трудности при решении многих задач микромира и многие из них считаются не разрешимыми в рамках сложившихся понятий и представлений, поэтому мы вынуждены возвратиться к попытке Макса Планка выполнить вывод математической модели закона излучения абсолютно черного тела на основе классических представлений.

Конечно, чтобы глубже понять физический смысл планковского дополнения надо иметь представление о магнитной структуре фотона, так как в этой структуре скрыт физический смысл самой постоянной Планка . Поскольку произведение описывает энергии фотонов всей шкалы фотонных излучений, то в размерности постоянной Планка и скрыта магнитная структура фотона. Нами уже установлено, что фотон имеет такую вращающуюся магнитную структуру, центр масс которой описывает длину волны , равную его радиусу . В результате математическое выражение константы Планка принимает вид

Как видно, константа Планка имеет явную механическую размерность момента импульса. Хорошо известно, что постоянством момента импульса управляет закон сохранения момента импульса и сразу становится ясной причина постоянства постоянной Планка.

Прежде всего, понятие «закон сохранения момента импульса» является понятием классической физики, а точнее - классической механики. Он гласит, что если сумма моментов внешних сил, действующих на вращающееся тело, равна нулю, то момент импульса, действующий на такое тело остаётся постоянным по величине и направлению.

Конечно, фотон не является твердым телом, которое только вращалось бы без перемещения в пространстве, но он имеет массу и у нас есть все основания полагать, что роль массы у фотона выполняет вращающаяся относительно оси магнитная субстанция, которая вращается и перемещается в пространстве со скоростью света.

Из математической модели (239) постоянной Планка следует, что магнитная модель фотона должна быть такой, чтобы одновременное изменение массы , радиуса и частоты вращающихся магнитных полей фотона оставляло бы их произведение, отраженное в математическом выражении постоянной Планка (239), постоянным.

Например, с увеличением массы (энергии) фотона уменьшается длина его волны.Опишем повторно, как это изменение реализуется постоянной Планка (239) в модели фотона (рис. 15 и 16).

Поскольку постоянством константы Планка управляет закон сохранения момента импульса , то с увеличением массы фотона растет плотность его магнитных полей (рис. 15 и 16) и за счет этого увеличиваются магнитные силы , сжимающие фотон, которые все время уравновешиваются центробежными силами инерции, действующими на центры масс этих полей. Это приводит к уменьшению радиуса фотона, который всегда равен длине его волны . Но поскольку радиус в выражении постоянной Планка возводится в квадрат, то для сохранения постоянства постоянной Планка (239) частота колебаний фотона должна при этом увеличиться. В силу этого незначительное изменение массы фотона автоматически изменяет его радиус и частоту так, что момент импульса (постоянная Планка) остается постоянным.

Таким образом, фотоны всех частот, сохраняя свою магнитную структуру, меняют массу, частоту и радиус так, чтобы . То есть принципом этого изменения управляет закон сохранения момента импульса.

Если задаться вопросом: почему фотоны всех частот движутся в вакууме с одинаковой скоростью? То получается следующий ответ. Потому что изменением массы фотона и его радиуса управляет закон локализации фотонов таким образом, что при увеличении массы фотона его радиус уменьшается и наоборот.

Тогда для сохранения постоянства константы Планка при уменьшении радиуса частота должна пропорционально увеличиваться. В результате их произведение остаётся постоянным и равным . При этом скорость центра масс фотона (рис. 20, а) изменяется в интервале длины волны таким образом, что её средняя величина остаётся постоянной и равной и не принимает нулевых значений (рис. 20, а).

Таким образом, постоянством константы Планка управляет один из самых фундаментальных законов классической физики (а точнее - классической механики) - закон сохранения момента импульса. Это - чистый классический механический закон, а не какое - то мистическое кантовое действие, как считалось до сих пор. Поэтому появление постоянной Планка в математической модели закона излучения абсолютно черного тела не даёт никаких оснований утверждать о неспособности классической физики описывать процесс излучения этого тела. Наоборот, самый фундаментальный закон классической физики - закон сохранения момента импульса как раз и участвует в описании этого процесса.

Таким образом, планковский закон излучения абсолютно черного тела является законом классической физики и нет никакой нужды вводить понятие «Квантовая физика». Существует и классический вывод формулы (239) Планка. Он базируется на корпускулярных представлениях о структуре фотонов. Представляем этот вывод.

Так как излучение абсолютно черного тела представляет собой совокупность фотонов, каждый из которых имеет только кинетическую энергию , то мы должны ввести в математическую модель закона максвелловского распределения кинетическую энергию фотона и тепловую энергию совокупности излученных фотонов

. (240)

Далее, мы должны учесть, что фотоны излучаются электронами атомов при их энергетических переходах. Каждый электрон может совершать серию переходов между энергетическими уровнями, излучая при этом фотоны разной энергии. Поэтому полное распределение объёмной плотности энергий излученных фотонов будет состоять из суммы распределений, учитывающих энергии фотонов всех энергетических уровней. С учетом изложенного, закон Максвелла, учитывающий распределения энергий фотонов всех энергетических уровней атома, запишется так

где - главное квантовое число, определяющее номер энергетического уровня электрона в атоме.

Известно, что сумма ряда (241) равна

. (242)

Умножая правую часть формулы (242) на константу Планка и на коэффициент из формулы (236) Релея – Джинса, мы получим результат, описывающий закономерность изменения плотности фотонов в полости чёрного тела (рис. 119, a) от частоты фотонов или их длины волны (рис. 119, b)

. (243)

Это и есть закон излучения абсолютно черного тела (243), полученный Максом Планком в 1901г. Выражение (243) незначительно отличается от выражения (242) коэффициентом, который, как считалось до сих пор, учитывает число степеней свободы электромагнитного излучения абсолютно черного тела. По мнению Э.В. Шпольского его величина зависит от характера волн электромагнитного излучения и может изменяться от до . Однако, в рамках изложенных представлений переменный коэффициент

(244)

характеризует плотность фотонов в полости абсолютно черного тела. Более точное значение постоянной составляющей этого коэффициента можно определить экспериментально.

Таким образом, мы вывели закон излучения абсолютно черного тела (243), основываясь на чистых классических представлениях и понятиях, и видим полное отсутствие оснований полагать, что этот закон противоречит классической физике. Наоборот, он является следствием законов этой физики. Все составляющие математической модели планковского закона (238) излучения абсолютно черного тела приобрели давно присущий им четкий классический физический смысл.

Обратим особое внимание на то, что в спектре абсолютно чёрного тела присутствуют фотоны (рис. 15, 16 и 119) разных радиусов , а максимумы температур (2000 и 1500 град. С, рис. 119) формирует совокупность фотонов с определёнными радиусами, величины которых достаточно точно определяет формула Вина

. (245)

Например, максимум температуры 2000 С формирует совокупность фотонов с радиусами

Это - невидимые фотоны инфракрасного диапазона и у нас сразу возникает возражение. Опыт подсказывает нам, что температуру 2000 С формируют видимые фотоны светового диапазона. Такая точка зрения - яркий пример ошибочности наших интуитивных представлений. Поясним её суть на следующем примере.

Солнечный морозный зимний день с температурой минус 30 град. Цельсия с хрустящим снегом под ногами. Обилие солнечного света формирует у нас иллюзию максимального количества световых фотонов, окружающих нас, и мы готовы уверенно констатировать, что находимся в среде фотонов со средней длиной волны (точнее теперь со средним радиусом) светового фотона (табл. 2). Но закон Вина (245) поправляет нас, доказывая, что мы находимся в среде фотонов, максимальная совокупность которых имеет радиусы (длины волн), равные (табл. 2).

Как видите, наша интуитивная ошибка более двух порядков. В яркий солнечный зимний день при морозе минус 30 градусов мы находимся в среде с максимальным количеством не световых, а инфракрасных фотонов с длинами волн (или радиусами) .

Попутно отметим, что длины волн (радиусы) фотонов изменяются в интервале 16 порядков (рис. 15, 16). Самые большие радиусы () имеют фотоны реликтового диапазона (табл. 2), формирующие минимально возможную температуру вблизи абсолютного нуля, а самые маленькие () - гамма фотоны (табл. 2) вообще не формируют никакую температуру. Формированием структуры фотонов и их поведением управляют 7 констант.

Представленная информация убеждает нас в справедливости формулы Вина (245) и мы можем найти радиусы фотонов, совокупность которых формирует второй максимум температуры (рис. 119, b) в полости чёрного тела (рис. 119, а).

. (248)

Как видно (247 и 248), с увеличением температуры радиусы фотонов, совокупность которых формирует температуру, уменьшаются. Это значит, что температуру вблизи абсолютного нуля формируют фотоны, имеющие самые большие радиусы, и мы сейчас убедимся в этом (рис. 120).

Рис. 120: а) фото мизерной части Вселенной; b) зависимость плотности излучения Вселенной от длины волны: теоретическая – тонкая линия; экспериментальная – жирная линия

Считалось, что формула Вина (245) справедлива только для замкнутых систем (рис. 119, а). Однако, мы сейчас увидим, что она идеально описывает не только излучение абсолютно черного тела (рис. 119, а), как замкнутой системы, но и Вселенной – абсолютно незамкнутой системы (рис. 120, а).

Теоретическая зависимость плотности излучения Вселенной (рис. 120, b – тонкая линия) подобна зависимости плотности излучения абсолютно черного тела (рис. 119, а) описываемого формулой Планка (243).

Максимум излучения Вселенной зафиксирован экспериментально при температуре (рис. 120, b, точка А) и имеет длину волны . Формула Вина (245) даёт такой же результат

(249)

Это яркое доказательство того, что закон Вина справедлив не только для замкнутых систем, таких, как абсолютно чёрное тело (рис. 119, а), но для абсолютно незамкнутых, таких, как Вселенная (рис. 120, a).

Чтобы найти источник максимума излучения Вселенной (рис. 120, b, точки А и 3), обратим внимание на то, что наблюдаемая нами Вселенная состоит из 73 процентов водорода, 24 процентов гелия и 3 процентов более тяжелых элементов. Это значит, что спектр Вселенной (рис. 120, b) формируют фотоны, излучаемые в основном рождающимися атомами водорода. Известно также, что рождение атомов водорода сопровождается процессом сближения электрона с протоном, в результате которого электрон излучает фотоны.

Совпадение теоретической величины длины волны (рис. 120, b, точка 3) с её экспериментальным значением (рис. 120, b, точка А), доказывает корректность использования формулы Вина (245) для анализа спектра излучения Вселенной.

Фотоны с длиной волны обладают энергией

Энергия соответствует энергии связи электрона с протоном в момент пребывания его на 108 энергетическом уровне. Она равна энергии фотона, излучённого электроном в момент установления контакта с протоном и начала формирования атома водорода.

Процесс сближения электрона с протоном ступенчатый. Он протекает при их совместном переходе из среды с высокой температурой в среду с меньшей температурой или, проще говоря, при удалении от звезд. Сближение электрона с протоном идёт ступенчато. Количество пропускаемых ступеней в этом переходе зависит от градиента температуры среды, в которой движется родившийся атом водорода. Чем больше градиент температуры, тем больше ступеней может пропустить электрон, сближаясь с протоном.

Естественно, что после формирования атомов водорода наступает фаза формирования молекул водорода, которая также должна иметь максимум излучения. Известно, что атомарный водород переходит в молекулярный в интервале температур .

Радиусы фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале:

; (251)

, (252)

cоответствующем интервалу длин волн фотонов, форирующих максимум в зоне точки С (рис. 120, b).

Таким образом, у нас есть основания полагать, что максимум излучения Вселенной, соответствующий точке С (рис. 120), формируется фотонами, излучаемыми электронами при синтезе атомов и молекул водорода.

Однако на этом не заканчиваются процессы фазовых переходов водорода. Его молекулы, удаляясь от звезд, проходят зону последовательного понижения температуры, минимальная величина которой равна Т=2,726 К. Из этого следует, что молекулы водорода проходят зону температур, при которой они сжижаются. Она известна и равна . Поэтому есть основания полагать, что должен существовать ещё один максимум излучения Вселенной, соответствующий этой температуре. Длина волны фотонов, формирующих этот максимум, равна

. (253)

Этот результат почти полностью совпадает с максимумом в точке на рис. 120 и доказывает, что спектр излучения Вселенной формируется процессами синтеза атомов и молекул водорода, а также - сжижения молекул водорода. Эти процессы идут непрерывно и не имеют никакого отношения к выдуманному Большому взрыву.

Как видно (246 - 253), формула Вина (245) справедлива не только для замкнутых систем, каким является полость абсолютно чёрного тела (рис. 119, а), но и для незамкнутых, подобных Вселенной.